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In large heterogeneous areas the relationship between soil organic carbon (SOC) and environmental covariates
may vary throughout the area, bringing about difficulty for accurate modeling of the regional SOC variation.
The benefit of local, geographically weighted regression (GWR) coefficients was tested in a case study on soil
organic carbon mapping across a 50,810 km2 area in northwestern China. This area is composed of an alpine
ecosystem in the upper reaches and oases in the middle reaches. The benefit was quantified by comparing the
quality of the maps obtained by GWR and geographically weighted ridge regression (GWRR) on the one side
and multiple linear regression (MLR) on the other side. In these methods spatial dependence of model residuals
is ignored. The root mean squared error (RMSE) of predictions of natural log-transformed SOC obtained with
GWR was smaller than with MLR: 0.565 versus 0.618 g/kg. The use of a local ridge parameter in GWRR did not
lead to an increase in accuracy. Besides we compared the quality of maps obtained by geographically weighted
regression followed by simple kriging of model residuals (GWRSK) and kriging with an external drift (KED)
with global regression coefficients. In these methods the spatial dependence of model residuals is incorporated
in the model. The RMSE with KED was smaller than with GWRSK: 0.515 versus 0.546 g/kg. We conclude that
fitting regression coefficients locally as in GWR only paid when no spatial random effect was included in the
model. When a spatial random effect was included, the flexibility of local, geographically weighted regression
coefficients was not needed and even undesirable as it led to less accurate predictions than KED with global re-
gression coefficients. In comparing the accuracy of prediction methods by leave-one-out cross-validation
(LOOCV) of a non-probability sample it is important to account for possible autocorrelation of pairwise differ-
ences in the prediction errors. The effective sample sizes were substantially smaller than the total number of
sampling points, so that most pairwise differences in MSE were not significant at a significance level of 10% in
a two-sided paired t-test.

© 2015 Published by Elsevier B.V.
1. Introduction

Soil is one of the most important carbon stocks globally and maps
showing soil organic carbon (SOC) can be used to guide practical soil
management (Meersmans et al., 2008). Cost-efficient methods for
mapping SOC content are therefore indispensable (Kheir et al., 2010).

A recent review of 90 papers on digital soil mapping and modeling
revealed that 31% (28) of these papers focused on SOC (Grunwald,
2009). Amid the plethora of mapping methods exploiting the relation
between SOC and covariates were regression kriging (Piccini et al.,
2014), (boosted) regression trees (Vasques et al., 2008, 2009), random
forest (Grimm et al., 2008), and neural network (Li et al., 2013).

Despite the significant progress based on these methods, there are
still methodological challenges, especially in large, highly variable
areas, with spatially varying relationships between soil properties like
soil organic carbon and environmental covariates. Recently GWR has
received increased attention because of its ability to account for local re-
lationships between the study variable and covariates (Brunsdon et al.,
1998; Fotheringham et al., 2002). In GWR modeling it is assumed that
neighboring observations have a stronger effect on the regression at a
target point than observations at a greater distance. In GWR a distance
decay function is applied to obtain local estimates of the regression
coefficients (Tu, 2011).

The potentials of GWR for SOC mapping have been explored in var-
ious regional studies.Mishra et al. (2010) compared GWRwithmultiple
linear regression (MLR) and regression kriging (RK). In the latter two
methods the regression coefficients were global, i.e., these were
assumed constant throughout the area. GWR led to a reduction in
RMSE of 22% over MLR, but only 2% over RK. Zhang et al. (2011) and
Wang et al. (2013) compared GWR with MLR. In both studies GWR
outperformed MLR: in the former study the RMSE as obtained with
MLR was reduced by 5%, in the latter study by 11%.
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Geographically weighted regression kriging (GWRK) (Harris et al.,
2010; Kumar et al., 2012) and simple kriging with GWR-derived local
means (GWRSK) (Harris and Juggins, 2011; Lloyd, 2010) are extensions
of the GWR approach. In these approaches the spatial variation is
modeled as the sum of a deterministic trend modeled by GWR, and
spatially correlated residuals. Kumar et al. (2012) compared GWRK
and RK, and found that RMSE as obtained by GWRK was reduced by
43% due to the local regression coefficients.

Other studies have demonstrated that GWR models not always
outperformed geostatistical models assuming global regression coeffi-
cients (Harris and Juggins, 2011; Harris et al., 2010; Lloyd, 2010). Also,
we are not aware of studies of SOC mapping in which GWR and
GWRSK are compared with kriging with an external drift (KED) using
restrictedmaximum likelihood (REML) estimation of themodel param-
eters. In RK the model parameters are estimated in two separate steps.
In the first step the regression coefficients are estimated by ordinary
least squares assuming independent data. In the second step the
variogram parameters are estimated by method-of-moments from the
regression model residuals. Ideally these steps are repeated until con-
vergence, with generalized least squares estimation of the regression
coefficients. This estimation procedure is known to be suboptimal; the
model parameters can best be estimated by REML (Lark and Webster,
2006). Suboptimal estimates of the model parameters may lead to
suboptimal predictions. Therefore we prefer to compare GWR and
GWRSK with KED–REML (hereafter shortly denoted as KED) in order
to assess the benefit of local regression coefficients in mapping SOC.

The aim of this study was to quantify the benefit of using local,
geographically weighted regression coefficients instead of global
coefficients in mapping SOC in a study area with complex topograph-
ical conditions, under two modeling assumptions. In the first model-
ing assumption spatial dependence of data is ignored (data are
assumed independent), whereas in the second assumption the spa-
tial dependence of data is part of the model. The benefit of local
regression coefficients assuming independent data is quantified by
comparing various quality indices among which the RMSE of GWR
(local coefficients) and MLR (global coefficients), whereas the bene-
fit when accounting for spatial dependence of data is quantified by
comparing the quality indices of GWRSK (local coefficients) and
KED (global coefficients).

2. Study area and data

2.1. Study area

As the second largest inland river of China, the Heihe River is
821 km long, originating from the Qilian Mountains and flowing
into the western Inner Mongolian Plateau (Lu et al., 2009; Wu,
2011). The study area, consisting of the upper and middle reaches
of the Heihe River Basin, stretches for 340 km from the northwest
to the southeast (Fig. 1), with coordinates of about 97°20′–101°51′
E and 37°41′–39°59′N. The major part of the study area is in Gansu
Province and a small part in Qinghai Province. The upper reaches
are in the southern part of this area (Fig. 1) with an average elevation
of 3556 m a.s.l. Most peaks are higher than 4000 m a.s.l. The average
elevation of middle reaches is about 1811 m a.s.l. This study area
covers about 50,810 km2, accounting for about 36% of the total area
of the Heihe River Basin.

Themean temperature of this area duringwinter and summer is−3
and 7 °C, respectively. Annual precipitation varies spatially from
82.8 mm to 425.6 mm, with rainfall occurring mainly from June to
September. The land covers of this area are heterogeneous due to the
wide range of elevation and strong anthropogenic activities in terms
of irrigation farming. The upper reaches are characterized by a humid
and cold climate, whereas the climate of the middle reaches is a typical
temperate arid environment with low precipitation and high evapora-
tion (Li et al., 2012). While the annual precipitation is very limited in
the middle section of the Heihe River Basin, water shortage is the
major obstacle to the crops that rely mainly on irrigation (Kang et al.,
2004).

2.2. Soil sampling

Part of the soil data (2010–2013), 144 soil points, were provided
by “Heihe Plan Science Data Center, National Natural Science Foun-
dation of China” (http://www.heihedata.org). To collect additional
data we selected 404 sampling locations by purposive sampling,
using the method of Zhu et al. (2008). In this method representative
soil sites are selected from soil-scape units constructed by fuzzy c-means
classification of pixels on the basis of the soil forming factors (covar-
iates). The additional soil sampling was conducted in July 2012 and
July 2013. All the sampling sites were located by handheld global po-
sitioning system (GPS) receivers. A 100–150 cm deep soil pit was
dug at each site. In total 548 topsoil (0–20 cm) samples were collect-
ed and stored in a digital database (Fig. 1). The samples were subse-
quently dried, sieved at 2 mm and analyzed using theWalkley–Black
procedure for SOC.

The observed SOC contents in surface soils varied from 0.70 to
132.19 g/kg, with a mean value of 31.33 g/kg (Table 1). The frequency
distribution of SOC showed strong positive skew; the skewness was
1.50 (Fig. 2, Table 1). For all prediction methods we therefore trans-
formed SOC measurements by taking the natural logarithms (LnSOC).
The skewness dropped to 0.15 (Table 1).

2.3. Predictors

Predictors utilized in this study for the mapping of SOC content of
0–20 cm topsoil (g/kg) were slope, aspect, elevation, profile curvature,
plan curvature, topographicwetness index (TWI),mean annual air tem-
perature (MAAT),mean annual precipitation (MAP), solar radiation, soil
type maps, land use maps, and normalized difference vegetation index
(NDVI).

The terrain attributes slope, aspect, profile curvature, plan curvature
and TWIwere derived from a digital elevationmodel (DEM)whichwas
obtained from the CIAT (International Centre for Tropical Agriculture)
SRTM (Spaceshuttle Radar Topographical Mission) website (http://
srtm.csi.cgiar.org). The SRTM DEM data (Jarvis et al., 2008) were geo-
referenced from three arc second resolution to 30 m × 30 m resolution.
Slope, aspect and SAGA TWI (System of Automated Geoscientific Analy-
ses Topographic Wetness Index) were extracted in SAGA GIS (SAGA
Development Team, 2008). SAGA TWI was calculated based on the fol-
lowing equation (Moore et al., 1993):

TWI ¼ ln
α

tanβ

� �
ð1Þ

whereα is the accumulative upslope area per unit contour length (or spe-
cific catchment area) computed with the D8 algorithm (O'Callaghan and
Mark, 1984), and β the local slope gradient. SAGA TWIwill assign amore
realistic, higher potential soil wetness than the TWID8 to grid cells situat-
ed in valley floors with a small vertical distance to a channel (Boehner
et al., 2002). The cosine function was selected to transform aspect data
to the range from−1 to 1 indicating the degrees of north. Potential inso-
lation (incoming solar radiation), expressed in kWm−2, mainly depends
on elevation, slope and aspect, and thus can be derived directly from
DEMs. Average annual potential insolation was calculated for the study
area by means of the Solar Radiation function in ArcGIS 10.0 (ESRI,
2012). One year instead of a long-term average potential insolation was
calculated, as the potential insolation only changes based on the scales
of obliquity (Kunkel et al., 2011).

Beijing-1 multispectral data were obtained from Watershed Allied
Telemetry Experimental Research (Li et al., 2009) at 32 m spatial

http://www.heihedata.org
http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org


Fig. 1. Land use and sampling sites in the Heihe River Basin, China.
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resolution in the year 2008. The NDVI was computed in the ENVI
software environment described as:

NDVI ¼ NIR−redð Þ
NIRþ redð Þ ð2Þ

where NIR is the near-infrared band and red the red band (Rouse et al.,
1973).

Mean annual air temperature (MAAT) and mean annual precipita-
tion (MAP) data were extracted from the database of the National Me-
teorological Information Center, China Meteorological Administration
(CMA, 2011). Land cover and soil type data were acquired from Data
Center for Resources and Environmental Sciences Chinese Academy of
Table 1
Statistical summary of the soil organic carbon and covariates.

Minimum Maximum Mean

SOC (g/kg) 0.70 132.19 31.33
LnSOC (g/kg) −0.36 4.88 2.90
Elevation (m) 1351.00 4600.00 2417.14
Slp (%) 0.20 102.52 14.68
Cos(Asp) −1.00 1.00 0.07
TWI 3.61 10.67 6.95
MAAT (°C) −2.60 7.50 4.06
MAP (mm) 87.75 422.15 247.85
Solar (103 kW m−2) 1.11 2.08 1.61
NDVI −0.18 0.43 0.05
Sciences. Vector layers were converted to raster format, followed by a
resampling of the entire variables to 30 m resolution.

All quantitative predictors were scaled, so that the mean values and
standard deviations of the scaled predictors were 0 and 1, respectively.
The absolute values of the regression coefficients of the scaled predic-
tors reflect the importance of the predictors.

Based on the results obtained by ANOVA and Duncan's method for
multiple comparison (Duncan, 1955) the number of land cover/land
use categories was reduced to three: (1) cropland, village and barren,
(2) forest, and (3) grassland and wetland. There were 14 soil types in
the study area. The soil type is based on the Soil Map of the World
(FAO90). Leptosols covered the largest area (39.7%). Eight primary soil
types covered 89.5% of the study area, while the remaining 6 types of
Median Standard deviation Skewness Kurtosis

13.63 33.88 1.50 1.20
2.61 1.05 0.15 −0.60

2046.00 947.83 0.39 −1.41
4.63 17.78 1.31 1.14
0.14 0.68 −0.18 −1.42
7.19 1.82 −0.27 −1.33
5.67 3.00 −0.48 −1.28

196.42 114.47 0.24 −1.67
1.54 1.69 0.55 0.72
0.05 0.12 0.47 −0.12



Fig. 2. Frequency distribution of raw SOC and LnSOC (transformed by natural logarithms).
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soil covered 10.5% of the study area. Using again ANOVA and Duncan's
method, the soil types were grouped into three classes: (1) Arenosols,
Calcisols, Gypsisols, Phaeozems and Solonchaks, (2) Anthrosols,
Fluvisols, Gleysols, Greyzems, and Kastanozems and (3) the others.

LnSOC showed the strongest correlation with elevation, MAP,
MAAT, TWI and slope (Table 2). The strong positive correlation be-
tween LnSOC and elevation (correlation coefficient: 0.671) can be
explained by the relation between elevation and both abiotic and
biotic factors that directly affect the SOC content in the topsoil,
such as MAP and MAAT. Also, elevation is associated with land
cover. In upland areas land cover was mainly grassland and forest,
whereas in lower regions this was mainly cropland and barren.
Mutual correlation between predictors was strong for quite a few
pairs. This collinearity of predictors may cause problems in fitting
global and local regression models.

3. Regression modeling

In this section five prediction methods for LnSOC are described.
Table 3 summarizes the modeling assumptions underlying these pre-
diction methods.

3.1. MLR

In MLR the soil property of interest is modeled as a linear combi-
nation of predictors. It is assumed that the model residuals are
Table 2
Pearson correlations between LnSOC and quantitative predictors.

NDVI Solar MAP MAAT

LnSOC −0.123 0.176⁎⁎ 0.639⁎⁎ −0.62
Elevation −0.359⁎⁎ 0.482⁎⁎ 0.883⁎⁎ −0.88
Slope −0.303⁎⁎ 0.047 0.697⁎⁎ −0.62
Cos(Asp) 0.050 0.059 0.035 −0.02
TWI 0.353⁎⁎ −0.264⁎⁎ −0.772⁎⁎ 0.71
MAAT 0.166⁎⁎ −0.423⁎⁎ −0.914⁎⁎ 1
MAP −0.170⁎⁎ 0.384⁎⁎ 1
Solar −0.162⁎⁎ 1
NDVI 1

LnSOC: log-transformed SOC; Cos(Asp): cosine of aspect; TWI: system of AutomatedGeoscienti
annual precipitation; Solar: incoming solar radiation; Soil: soil type indicator; Land: land use t
⁎ Significant at the 0.05 level.
⁎⁎ Significant at the 0.01 level.
independent and that the regression coefficients are global (Table 3).
This implies that the soil property of interest is predicted by the simple
formula:

ŷ ið Þ ¼ β̂0 þ
XK
k¼1

β̂kxk ið Þ ð3Þ

where ŷ(i) is the predicted soil property at location i, β̂0 the estimated

intercept, β̂k the estimated regression coefficient for predictor k and
xk(i) the value for the kth predictor at location i. The regression coeffi-
cients are estimated by ordinary least squares (OLS):

β̂ ¼ XTX
� �−1

XTy ð4Þ

where T denotes the transposition of a matrix, X the design matrix
formed by the values of predictors xk(i), and y the vector withmeasure-
ments of the soil property of interest at the sampling locations. The
relationship represented by Eq. (3) is assumed to be constant across
the study area.

3.2. GWR

UnlikeMLR, in GWR a local regressionmodel is fitted at each predic-
tion location. Similar to MLR in GWR it is assumed that the model-
TWI Cos(Asp) Slope Elevation

1⁎⁎ −0.584⁎⁎ 0.069 0.582⁎⁎ 0.671⁎⁎

6⁎⁎ −0.828⁎⁎ 0.020 0.443⁎⁎ 1
1⁎⁎ −0.878⁎⁎ −0.016 1
5 0.019 1
7⁎⁎ 1

fic Analyses topographicwetness index;MAAT:mean annual air temperature;MAP:mean
ype indicator; NDVI: normalized difference vegetation index.



Fig. 3. The regression coefficients of multiple linear regression (MLR) estimated by ordi-
nary least squares (OLS), and kriging with an external drift (KED) estimated by restricted
maximum likelihood (REML).

Table 3
Assumptions in applied prediction methods.

Method Regression
coefficients

Model
residuals

Multiple linear regression (MLR) Global Independent
Geographically weighted regression (GWR),
geographically weighted ridge regression (GWRR)

Local Independent

Kriging with an external drift (KED) Global Dependent
Simple kriging with GWR-derived local means
(GWRSK)

Local Dependent
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residuals are independent (Table 3). With GWR the soil property of
interest is predicted by (Fotheringham et al., 2002):

ŷ ið Þ ¼ β̂0 ið Þ þ
XK
k¼1

β̂k ið Þxk ið Þ: ð5Þ

Note the argument (i) of the regression coefficients, which implies
that they are a function of the prediction location i. The location-

specific regression coefficients β̂0ðiÞ and β̂kðiÞ (k=1…K) are estimated
byweighted least squares,withweights related to the distance between
the prediction location and the sampling locations. The closer a sam-
pling location is to prediction location i, the larger its weight. The soil
property of interest at a location i is predicted as follows: (i) draw a
circle around prediction location i, (ii) weight a measurement of the
soil property of interest at a sampling location in accordance with
its proximity to prediction point i and (iii) estimate the regression
coefficients by:

β̂ ið Þ ¼ XTW ið ÞX
� �−1

XTW ið Þy ð6Þ

where X denotes the design matrix formed by the values of predictors
xk(i) (all elements of the first column contain the value 1 for the inter-
cept), and W(i) the diagonal weights matrix for prediction location i.
The weights are determined by the weighting functions, also referred
to as spatial kernels. The spatial kernel can be either fixed or adaptive.
A fixed spatial kernel function keeps a one-sized kernel over the
whole study area. An example is the Gaussian distance-decay function:

wij ¼ exp −
di j
h

� �2

ð7Þ

where dij is the Euclidean distance between prediction location i and
sampling location j, and h the kernel bandwidth. Note that the weights
are nonzero for all data points, no matter how far they are from the
center i (Fotheringham et al., 2002).

Conversely, the size of the adaptive kernel is defined by the number
of the nearest neighborhoods. In areas with low sampling density the
geometric size of the adaptive kernel is increased to capture enough
observations. In a bi-square nearest neighborhood function the spatial
weights (wij) are computed by:

wij ¼ 1− di j=hi
� �2h i2

if di jbhi
0 otherwise

(
ð8Þ

where hi is the nth nearest neighbor distance from prediction location i.
When the distance from prediction location i to a sampling location is
equal to or greater than the bandwidth hi, the weight wij is zero. Previ-
ous studies showed that GWR is particularly sensitive to the representa-
tiveness and amount of sample data (Scull, 2010). In the case study
hereafter, an adaptive spatial kernel was employed because the
sampling density strongly varied throughout the study area. The opti-
mal number of sampling locations in the search window, as obtained
by cross-validation, was 79.

3.3. GWRR

It has been shown that in GWR the spatially varying coefficients are
prone to collinearity even when there is no or weak collinearity among
the predictors in the global regression model (Griffith, 2008; Wheeler,
2007; Wu and Zhang, 2013). This effect is caused by the weighting of
the predictors.With increasing collinearity of predictors, the correlation
of the regression coefficientswill become stronger, leading to unreliable
estimates of the local regression coefficients and unreliable model
predictions. Therefore in GWR it is important to check for collinearity
problems and to control the estimated regression coefficients.
As a remedy for collinearity of predictors leading to ill-conditioned
design-matrices in multiple linear regression and unreliable estimates
of regression coefficients Hoerl and Kennard (1970) proposed ridge re-
gression. The ridge regression coefficient minimizes the residual sum of
squares along with a penalty on the size of the squared coefficients as:

β̂R ¼ arg minβ
Xn
i¼1

yi−β0−
XK
k¼1

xk ið Þβk

 !2

þ λ
XK
k¼1

β2
k

8<
:

9=
; ð9Þ

where λ is the ridge regression parameter that controls the amount of
shrinkage in the regression coefficients and K the number of predictors.
The constraint of the ridge regression can be explicitly defined as
(Hastie et al., 2001):

β̂R ¼ arg minβ
Xn
i¼1

yi−β0−
XK
k¼1

xk ið Þβk

 !2

;

subject to
XK
k¼1

β2
k ≤s:

ð10Þ

Note that the intercept is not constrained by the ridge parameter. The
ridge regression coefficients are estimated by:

β̂R ¼ XTXþ λI
� �−1

XTy ð11Þ

where I is the K× K identity matrix. In the above equations the ridge re-
gression coefficients are global, but the same approach can be applied to
constraint the local regression coefficients inGWR, leading to geograph-
ically weighted ridge regression (GWRR) (Brunsdon et al., 2012;
Wheeler, 2007).



Fig. 4. The regression coefficients of geographical weighted regression (GWR) and geographical weighted ridge regression (GWRR).
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For application of ridge regression in the GWR framework the inter-
cept must be removed (Wheeler, 2007). In GWRR the intercept can be
removed either globally or locally (Wheeler, 2006). With global center-
ing the GWRR coefficients are estimated by:

β̂ ið Þ ¼ X�TW ið ÞX� þ λ ið ÞI
� �−1

X�TW ið Þy� ð12Þ

where X⁎ is the n × Kmatrix of standardized explanatory variables, and
y⁎ the standardized response variable. If the local ridge parameter λ(i) is
0, the estimated coefficients of GWR and GWRR are equal. We removed
the intercept locally, as it introduces less bias in the coefficients than
with the global centering. With local centering the predictors are first
globally scaled, so that theirmeans and variances are 0 and 1 respective-
ly. Next for each local model the response variable is centered by
subtracting local means, so that the means are 0 before estimating the
ridge regression coefficients. These local means are computed as a
weighted average, with weights equal to the square root of the kernel
weights wij. The local regression coefficients are then estimated by:

β̂ ið Þ ¼ XT
wXw þ λ ið ÞI

� �−1
XT
wyw ð13Þ

where Xw is the matrix of weighted, locally centered predictors, yw the
vector ofweighted, locally centered responses, and I the identitymatrix.
Fig. 5. Experimental residual variograms and mode
The local ridge parameter λ(i) is estimated by cross-validation, and so is
the optimal value of the adaptive bandwidth, which was 244 in this
case. After estimating the coefficients, the response variable predictions
are calculated by adding the local mean yw to ŷwðiÞ ¼ XwðiÞβ̂ðiÞ.

3.4. KED

In multiple linear regression it is assumed that the model residuals
are independent, so that the regression coefficients can be estimated
by ordinary least squares. In krigingwith an external drift themodel re-
siduals are assumed to be dependent. The covariance of the model-
residuals at two locations was modeled as a function of the distance
between two points, i.e., we assumed isotropy. The model parameters,
i.e., the regression coefficients and the parameters of the covariance
function (or semivariogram) were estimated by restricted maximum
likelihood (REML) (Lark andWebster, 2006). With KED the soil proper-
ty of interest at a location i is predicted by (Wackernagel, 2003):

ŷKED ið Þ ¼ m̂KED ið Þ þ
Xn
j¼1

ηKED i; jð Þ y jð Þ−m̂KED jð Þ½ � ð14Þ

where m̂KEDðiÞ is the local mean estimated as a linear combination of
predictors (computed with the REML estimates of the regression
ls fitted by REML for KED (a) and GWRSK (b).



Table 4
Quality indices of predictions of natural log of soil organic carbon as obtainedwith the five
methods.

Method ME
(g/kg)

MAE
(g/kg)

RMSE
(g/kg)

RPD Correlation
coefficient

MLR 0.00000035 0.438 0.618 1.704 0.80
GWR 0.029 0.398 0.565 1.864 0.84
GWRR 0.021 0.397 0.566 1.861 0.84
KED 0.017 0.359 0.515 2.044 0.87
GWRSK 0.037 0.380 0.546 1.928 0.85

Fig. 6. Root mean square error (RMSE) vs. mean absolute error (MAE) for the five predic-
tion methods as obtained by leave-one-out cross-validation.
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coefficients) and ηKED(i, j) is the krigingweight attached to sampling lo-
cation j. The krigingweightswere obtained by solving the following sys-
tem of equations:

Xn
j¼1

ηKED i; jð ÞCR j; kð Þ þ
XP
p¼0

μp ið Þxp kð Þ ¼ CR i; kð Þ

Xn
j¼1

ηKED i; jð Þ ¼ 1

Xn
j¼1

ηKED i; jð Þxp kð Þ ¼ xp ið Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð15Þ

where CR(k,j) is the spatial covariance of the residuals R(.) (Rð:Þ ¼ yð:Þ−
m̂KEDð:Þ) at the sampling locations k and j, CR(i,k) the spatial covariance
of R(.) at prediction location i and sampling location k, and μp(i)
Lagrange parameters. In prediction all sampling locations were used.
This implies thatwe assumed that the regression coefficientswere glob-
al (see Table 3). Note that if a local search window would have been
used the regression coefficients would have been local, as in GWR and
GWRSK. We used a global neighborhood so that by comparing the
performance of GWR and KED we can be conclusive about whether
local effects can best be modeled as fixed effects (as in GWR) or as a
random effect (as in KED).

3.5. GWRSK

By relaxing the assumption of global regression coefficients as in
MLR and KED with a global neighborhood, and the assumption of inde-
pendent model residuals as in MLR, GWR and GWRR, our fifth predic-
tion method is obtained, referred to as geographically weighted
regression simple kriging (GWRSK). First the local regression coeffi-
cients at the sampling locations were estimated as described in
Section 3.2 on GWR. Then the model residuals at these sampling points
were estimated, followed by estimating a variogram of the model-
residuals by restricted maximum likelihood. The soil property of inter-
est was predicted by simple kriging with mean 0 of the GWR-model
residuals, and adding the interpolated residual to the GWR-predicted
value (Eq. 5):

ŷGWRSK ið Þ ¼ ŷGWR ið Þ þ
Xn
j¼1

ηSK i; jð Þ y jð Þ−ŷGWR jð Þ½ � ð16Þ

where ŷGWR(i) is the trend as estimated by the GWRmodel and ηSK the
simple kriging weights computed by:

Xn
j¼1

ηSK i; jð ÞCR j; kð Þ ¼ CR i; kð Þ for k ¼ 1; 2; …; n : ð17Þ

For all computations we used the statistical software R (version
3.1.1, http://cran.r-project.org/). For GWR we used R package spgwr
(Fotheringham et al., 2002), for GWRR we used package GWmodel
(Lu et al., 2014). For REML estimation of the variogram of KED and
GWRSK we used package DEoptim (Ardia et al., 2011), for kriging we
used package gstat (Pebesma, 2004).

3.6. Model selection

Predictors were selected by stepwise regression in both directions
(forward and backward), using Akaike information criterion (AIC) as a
selection criterion. Inmodel selectionwe assumed that themodel resid-
uals were independent, i.e., the best subset of predictors was selected
for the multiple linear regression (MLR) model. The same set of predic-
tors was used in all other models, so that the estimated regression coef-
ficients can be compared.
All predictors were standardized. First their means were subtracted,
then the centered values were divided by the standard deviations. In
doing so the regression coefficients can be compared: themore extreme
a coefficient is, either positive or negative, the stronger the effect of the
associated predictor.

4. Cross-validation

Leave-one-out cross-validation (LOOCV) was performed to evaluate
the prediction methods. Four quality indices were computed for model
validation: mean error (ME), mean absolute error (MAE), root mean of
squared error (RMSE), and ratio of performance to deviation (RPD)
defined as:

RPD ¼ STD
RMSE

ð18Þ

where STD is the spatial standard deviation of SOC (g/kg). RPD
quantifies the predictive ability of the model compared with using the
sample average of SOC as a predictor. A prediction method with an
RPD value smaller than 1.4, between 1.4 and 2.0, and larger than 2.0 is
sometimes qualified as inaccurate, basically acceptable and accurate, re-
spectively (Chang et al., 2001), although we realize that the prediction
accuracy is largely determined by the residual variance, and that these
boundary values are arbitrary.

To check whether we can use the paired t-test to test hypothesis on
the difference in MSEs between methods, we computed Moran's I
statistic standard deviate for paired differences in squared prediction
errors (Moran, 1948). For all pairs of methods we rejected the null-
hypothesis of no spatial autocorrelation of difference in squared predic-
tion errors at a significance level of 0.01, i.e., a probability of rejecting the
null-hypothesis of 1% when it is true. In other words the assumption of
independent pairwise differences in the paired t-test is unrealistic.
Spatial autocorrelation of the pairwise differences in a paired t-test

http://cran.r-project.org/


Table 5
The p-values of two-sided paired t-tests of mean differences in squared prediction errors for six pairs of methods, as obtained by ignoring and accounting for spatial autocorrelation of
differences.

Autocorrelation MLR/GWR KED/GWRSK KED/GWR KED/MLR GWR/GWRR GWR/GWRSK

Ignored 0.013 0.026 0.0032 0.00016 0.88 0.060
Accounted for 0.19 0.21 0.10 0.057 0.96 0.22
Effective sample size 152 171 166 140 60 230
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can be accounted for by computing the effective sample size (Dale and
Fortin, 2009):

n0 ¼ n2Xn

i¼1

Xn

j¼1
cor d2i ; d

2
j

� � ð19Þ

where cor(di2, dj2) is the spatial autocorrelation of the difference in
squared prediction errors obtained with two methods at point i and
point j. The correlogram of the pairwise differences in squared predic-
tion errors was estimated, as before, by REML using differential evolu-
tion as an optimization method.

The effective sample size was used to compute the t-statistic:

t ¼ d−d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var dð Þ=n0p ð20Þ
Fig. 7.Maps of soil organic carbon predicted by (a) M
where d0 is the mean of the difference in squared errors (difference in
MSEs) under the null-hypothesis. We tested the null-hypothesis of

zero difference inMSE (d0 ¼ 0). The two-sided p-value of twas comput-
ed from a Student's t distribution with n′ − 1 degrees of freedom.
5. Results

5.1. Model parameters

5.1.1. Regression coefficients
In stepwise regression all predictors except slope and aspect were

selected. For most predictors the regression coefficients as estimated
by OLS (MLR) and REML (KED) were very similar (Fig. 3). Exceptions
were the coefficients for Soil3 and Land3. Estimated with REML, Land3
had a small positive effect, whereas estimated with OLS (MLR) this pre-
dictor had a somewhat stronger negative effect. Also for Soil3 the signs
were opposite. The coefficients for MAP, elevation, Land2, and MAAT
LR, (b) GWR, (c) GWRR, (d) KED and (e) GWRSK.



Table 6
Summary statistics of the predicted soil organic carbon content.

Method Minimum
(g/kg)

Median
(g/kg)

Maximum
(g/kg)

Mean
(g/kg)

Standard
deviation
(g/kg)

Coefficient of
variation
(%)

MLR 2.79 14.94 233.50 19.39 16.44 84.80
GWR 2.09 14.35 398.18 18.35 16.77 91.39
GWRR 1.21 14.59 377.79 18.76 19.34 103.09
KED 1.08 14.34 281.20 18.97 16.17 85.25
GWRSK 0.73 14.65 312.06 19.04 17.94 94.22

Fig. 8.Difference in predictions of SOC obtainedwith GWR andMLR (ŷGWR− ŷMLR) (a), and obtainedwith GWRSK andKED (ŷGWRSK− ŷKED) (b). Note: the values are draped over theDEM
they are based on.
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were most extreme with both estimation methods, and thus had the
strongest effect on LnSOC (explained most of the spatial variation of
LnSOC). These predictors also showed relatively strong correlation
with LnSOC (Table 2).

The GWR coefficients showed substantial variation across the study
area, especially those of MAAT, MAP, solar and elevation (Fig. 4). The
effects of elevation, MAAT and MAP varied from strongly positive to
strongly negative. The average values of the regression coefficients for
elevation and NDVI were close to the values of the regression coeffi-
cients as estimated by OLS (MLR) and REML (KED). For all predictors
the signs of the average regression coefficients were consistent with
those obtained by OLS (MLR).

The GWRR coefficients showed less variation compared to the GWR
coefficients (Fig. 4). The very extreme regression coefficients for eleva-
tion,MAAT andMAP as obtainedwith GWRwere avoided. The averages
of the GWRR coefficients were close to the GWR coefficients.

5.1.2. Variogram parameters
The fitted residual variograms of KED and GWRSK are shown in

Fig. 5. Note that both fitted variograms were not fitted to the method-
of-moments experimental variograms, but by REML. For KED an expo-
nential model with a 0.08 nugget was fitted, and for GWRSK a spherical
model with 0.07 nugget was fitted. We also fitted nested spherical +
exponential models, but based on AIC these nested models were inferi-
or. Both fitted variograms had a very short distance parameter of about
100m. The nugget-to-sill ratio was 18.6% for KED and 19.4% for GWRSK.
The variogram parameters indicated that there was not much spatial
structure in the residuals of the spatial trend, neither for KED nor for
GWRSK. The larger sill (nugget+partial sill) of theKEDvariogramcom-
pared to that of the GWRSK variogram showed that more variation was
explained by the GWRmodel compared to the spatial trend part of the
KED model with global regression coefficients.

5.2. Cross-validation results

Details of the performance of the five models are given in Fig. 6 and
Table 4. For all five methods the cross-validation ME was very small.
MAE and RMSE with GWR were smaller than with MLR, showing that
when spatial dependence of model residuals is ignored, the accuracy
of predictions can be increased by local, geographically weighted
regression coefficients. However, when spatial dependence is incorpo-
rated in themodel as in KED andGWRSK, the use of local, geographically
weighted regression coefficients did not pay. KED outperformed all
other methods, GWRSK included, in terms of RMSE and MAE. The
RMSE and MAE of GWR were reduced by simple kriging of the GWR
residuals as in GWRSK, but GWRSK performed not as good as KED.
Surprisingly, GWRR failed to improve the performance of GWR. The
cross-validation RMSE and MAE of GWRR were nearly equal to those
of GWR.

The correlation between predicted SOC (as obtained on natural log-
scale) and observed SOC ranged from 0.80 for MLR to 0.87 for KED
(Table 4). Overall, all these methods showed acceptable performance;
RPD values were larger than 1.4 for all methods.

Spatial autocorrelation of the pairwise differences in squared predic-
tion errors at the sampling points caused the effective sample sizes to be
much smaller than 548 (Dale and Fortin, 2009), the total number of
sampling points (Table 5). As a consequence, the p-values of the t statis-
tics increased considerably. Accounting for spatial autocorrelation, only
the difference inMSEs between KED andMLRwas significant at a signif-
icance level of 10%. The difference in MSEs between GWR and KED was
very close to being significant at this significance level. All other tested
pairs of methods had no significant difference in MSEs.

5.3. Maps of predicted soil organic carbon content

Maps of predicted SOC as obtained by the fivemethods are shown in
Fig. 7. Note that all models were on the natural log scale. Here we back-
transformed the predictions on the log-scale by exponentiation, so
we did not add half the prediction error variance to the exponent
(Webster and Oliver, 2007). If we assume a log-normal distribution
for the model-residuals, then the back-transformed prediction thus
obtained is the median of the distribution, not the mean.

Broadly speaking, the maps were very similar. All maps showed
strong spatial variation of SOC in topsoil. All maps showed a clear
northwest/southeast boundary dividing this area into two regions



Table 7
Soil organic carbon content under different land covers using the KED method.

Land
cover

Area
(km2)

Minimum
(g/kg)

Maximum
(g/kg)

Mean
(g/kg)

Standard
deviation
(g/kg)

Coefficient of
variation
(%)

Forest 4864 2.15 229.31 37.78 18.03 47.72
Grassland 19,218 1.81 152.69 20.17 13.11 65.00
Cropland 5083 1.92 74.54 11.51 7.96 69.16
Village 686 2.94 64.89 10.28 8.25 80.25
Wetland 1829 2.36 104.19 26.1 16.23 62.18
Barren 19,130 0.94 191.24 13.27 13.89 104.67
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with high and low SOC contents respectively. High predicted SOC values
occurred in the southern part of the study area where elevation was
high and the land was mainly covered by plateau grassland and forest.
The high SOC contents in this part of the study area can be explained
by the higher rainfall and lower mean temperature in the alpine
environment. In themiddle reacheswith a low annual precipitation, rel-
atively high predicted values of SOC occurred in the northeastern part
where the typical ecosystem was human controlled agro-ecosystem
and many artificial oases occurred, supplied with water from the
Heihe River.

To highlight differences between themaps, we plotted amap show-
ing differences in predicted SOC as obtained with GWR and MLR (GWR
minus MLR), and similarly for GWRSK and KED methods (GWRSK
minus KED) (Fig. 8). Absolute differences between GWR and MLR
predictions were smaller than 2 g/kg for 47% of the pixels; for
GWRSK-KED absolute differences these were 55% of the pixels. For an
absolute difference of 20 g/kg these percentages were 2% and 3%, re-
spectively. All the differences were relatively small in the northwestern
part, where landwasmainly covered byGobi and SOC content in topsoil
was low. These differences between GWR and MLR were smaller than
between GWRSK and KED. The differences between GWRSK and KED
were relatively large in themountainous regions, despite that elevation
was used as a predictor in both models, showing the complex spatial
variation of SOC contents.

Summary statistics of the predicted SOC as obtained with the five
methods are presented in Table 6, so as to make a further comparison.
For all five methods the mean of the predicted SOC was smaller than
themean of the observed SOC value (compare Tables 1 and 6), whereas
themedian of the predicted SOC exceeded the observedmedian. Amap
of SOC contents produced byMLR showed the smallest range (2.79 g/kg
to 233.5 g/kg), whereas this range on the GWR map was the largest
(2.09 g/kg to 398.18 g/kg). Also for all five methods the maximum pre-
dicted SOC exceeded the observed maximum. For MLR the difference
between predicted and observed maximum was the smallest, for GWR
the largest. This is as expected as the use of global regression coefficients
will lead to a stronger smoothing effect and can lead to exceptionally
large predicted values.

Summary statistics of the SOC contents as predicted by the best-
performing method KED under various land covers are shown in
Table 7. The mean value of predicted SOC was the largest for forest,
followed by wetland and grassland, all three land cover types mainly
Table 8
Variance inflation factors for MLR model and GWR model.

MAAT MAP Solar Elevation T

MLR
8.787 9.174 1.484 11.614 4

GWR
Minimum 1.365 1.293 1.155 1.914 1
25% 3.954 3.431 1.243 2.386 1
Median 18.019 14.699 1.748 5.695 2
Mean 18.052 17.388 2.348 7.322 2
75% 23.603 25.305 2.474 9.499 3
Maximum 190.983 158.198 8.014 49.555 7
occurring in the alpine areas. High SOC contents could be explained by
the denser vegetation coverage and mainly natural ecosystems, includ-
ing cold desert, montane, alpinemeadows and steppe. This distribution
was also consistent with the spatial variation of SOC under different
land covers (Fig. 1).

6. Discussion

The central research questionwaswhether the quality of predictions
can be improved by local regression coefficients as implemented in
GWR and GWRSK instead of global regression coefficients as in MLR
and KEDwith a global search neighborhood. Ignoring the spatial depen-
dence of the model residuals, the use of local regression coefficients in
GWR reduced the RMSE of MLR by 8.6%. However, by incorporating
the spatial dependence of the model residuals into the model, the use
of local geographically weighted regression coefficients did not pay.
We found that KED outperformed GWR (RMSE of KED was 8.8%
smaller) and GWRSK, although the difference in MSEs with GWRSK
was not significant (p = 0.21) and with GWR only marginally signifi-
cant (p = 0.10) in a two-sided paired t-test if we accounted for spatial
autocorrelation of the pairwise differences in squared errors. This result
shows that in this case local effects can better be modeled as a spatial
random effect than as local fixed effects.

An alternative for GWR, suggested by one of the reviewers, is to
account for spatially varying regression coefficients in a more standard
regression approach. For instance, we may account for different regres-
sion coefficients for MAAT, MAP et cetera between land covers or soil
types. This can be done either by adding interaction terms between
the categorical predictors land covers/soil types and the other (quanti-
tative) predictors (fixed effects only), or by adding a random effect for
the other predictors with land covers/soil types as a blocking factor,
leading to a linear mixed model. Accounting for different coefficients
between land cover types for MAP and elevation, the residual variance
was 0.602 for both the linear model with interaction (fixed effects
only) and the linear mixed model. Comparing these residual variances
with the cross-validation RMSE of GWR (Table 4) shows that these
alternatives most likely will not perform as good as GWR.

The somewhat disappointing performance of GWR can possibly
be explained by collinearity among the predictors. We checked for
collinearity problems by computing variance inflation factors (VIF)
(Wheeler and Tiefelsdorf, 2005).

The VIF of a predictor can be computed by regressing this predictor
on all remaining predictors. The VIF is then computed as:

VIFi ¼ 1

1−R2
i

ð21Þ

where Ri
2 is the coefficient of determination of predictor i. As a rule of

thumb, a VIF N 10 indicates a collinearity problem. The VIF values for
each predictor in global (MLR) and local (GWR) regressions are summa-
rized in Table 8. In global regression elevation was strongly related to
the remaining predictors, indicating a slight collinearity problem with
MLR. This collinearity problem was not severe, as the standard error of
WI NDVI Land2 Land3 Soil2 Soil3

.050 1.538 3.398 3.398 3.431 3.431

.273 1.199 1.231 1.403 1.146 1.179

.853 1.318 1.368 1.535 1.322 1.331

.279 1.482 3.781 3.872 1.726 1.388

.552 1.674 8.305 8.550 1.718 1.654

.053 1.714 7.030 7.245 2.097 1.673

.951 3.136 106.096 107.256 2.433 4.891
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the estimated regression coefficient for elevation was reasonable. With
local regression themeanVIFs ofMAATandMAPweremuch larger than
10 indicating somewhat stronger collinearity problems in GWR com-
pared to MLR. For five predictors the maximum VIF values were ex-
tremely large, much larger than 10, however the 75th percentile of
the distributions of VIF exceeded 10 for only MAAT and MAP. But
thesemaximum valueswere outliers as the 75th third quartiles seemed
to be outliers whereas only two of them had VIFs larger than 10 at 75th
percentiles (MAAT and MAP).

Collinearity of predictorsmay lead to unrealistic estimates of regres-
sion coefficients (Wheeler, 2006), and as a consequence possibly unre-
alistic predictionswith large errors. The use of the local ridge parameter
in GWRR may have avoided unrealistic estimates of the regression
coefficients (Fig. 4), but does not lead to an increase of accuracy
compared to GWR.

We used the same data set for calibration of the various models and
for validation by LOOCV. This is not ideal, as calibration and validation
ask for different sampling designs (Brus et al., 2011). Preferably, for val-
idation additional locations are selected by probability sampling. This
probability sample is neither used for calibration nor for prediction.
With probability samples model-free, there is valid estimation of the
quality indices and their variances. Here such validation data set
was not available. Common practice is to report simply the cross-
validation MSE, without testing the statistical significance of the differ-
ences inMSE betweenmethods.We attempted to improve on this prac-
tice by computing effective sample sizes which account for spatial
autocorrelation of the pairwise differences of squared errors. These ef-
fective sample sizes were substantially smaller than the total number
of pairwise difference values (number of sampling locations), so that
most differences in MSE became insignificant at a significance level of
10% in a two-sided paired t-test. The effective sample sizes were based
on a calibrated model of the spatial autocorrelation. This makes our
conclusions on the significance of differences in MSE model-based,
and as a consequence to some extent debatable.

In this study we did not validate the prediction error variances as
computed by themodels, for instance by computingmeans of standard-
ized squared errors. R packages spgwr for GWR and GWmodel for
GWRR do not provide these variances. Validation of these variances is
recommended for future research.

7. Conclusions

1. Fitting regression coefficients locally as in GWR only paid when no
spatial random effect was included in the model.

2. When a spatial random effectwas included in themodel, the flexibil-
ity of local, geographically weighted regression coefficients was not
needed and even undesirable as it led to less accurate predictions
than KED with global regression coefficients.

3. In comparing the accuracy of prediction methods by leave-one-out
cross-validation of a non-probability sample it is important to ac-
count for possible autocorrelation of pairwise differences in the
prediction errors.

4. In this case the effective sample sizeswere substantially smaller than
the total number of sampling points, so that most pairwise differ-
ences in MSE were not significant at a significance level of 10% in a
two-sided paired t-test.
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