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Abstract The spatial resolution of general circulation
models (GCMs) is too coarse to represent regional climate
variations at the regional, basin, and local scales required
for many environmental modeling and impact assessments.
Weather research and forecasting model (WRF) is a next-
generation, fully compressible, Euler non-hydrostatic
mesoscale forecast model with a run-time hydrostatic
option. This model is useful for downscaling weather and
climate at the scales from one kilometer to thousands of
kilometers, and is useful for deriving meteorological
parameters required for hydrological simulation too. The
objective of this paper is to validate WRF simulating 5 km/
1 h air temperatures by daily observed data of China
Meteorological Administration (CMA) stations, and by
hourly in-situ data of the Watershed Allied Telemetry
Experimental Research Project. The daily validation shows
that the WRF simulation has good agreement with the
observed data; the R2 between the WRF simulation and
each station is more than 0.93; the absolute of meanbias
error (MBE) for each station is less than 2°C; and the
MBEs of Ejina, Mazongshan and Alxa stations are near
zero, with R2 is more than 0.98, which can be taken as an
unbiased estimation. The hourly validation shows that the
WRF simulation can capture the basic trend of observed
data, the MBE of each site is approximately 2°C, the R2 of
each site is more than 0.80, with the highest at 0.95, and the
computed and observed surface air temperature series
show a significantly similar trend.
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1 Introduction

The spatial resolution of general circulation models
(GCMs) is too coarse to represent regional, basin, and
local climate variations at the scales required for many
environmental modeling and impact assessments. Two
techniques have been developed that counter this defi-
ciency: semi-empirical (statistical) downscaling (SDS) of
GCM outputs and dynamic downscaling using regional
climate models (RCMs) nested within a GCM. A key
strength of SDS is the low computational demand, which
facilitates the generation of ensembles of climate realiza-
tions (Wilby et al., 2000). However, realistic SDS
scenarios are contingent on strong stationary empirical
relationships and on the choice of predictor variable(s) and
transfer function(s) used for the downscaling (Winkler et
al., 1997). RCMs are computationally demanding more
computer time than SDS to compute equivalent scenarios.
However, with the progress of computing speed, the main
advantage of RCMs (Wilby et al., 1999) is that their ability
to respond in physically consistent ways to different
external forcings (such as land-surface or atmospheric
chemistry changes) will be greatly improved.
Leander and Buishand (2007) and Leander et al. (2008)

assessed the effect of climatic change on the flood
quantiles of the French-Belgian River Meuse by precipita-
tion and temperature data from three RCMs. Lu et al.
(2006) coupled Canadian mesoscale compressible com-
munity (MC2) model with Xin’anjiang hydrological model
and obtained a good result of flood timing and peak
discharges at the Wangjiabao Station. Collischonn et al.
(2005) analyzed the flow forecasting of River Uruguay by
five alternative rainfall forecasts: zero, three scales rainfall
forecasting from advanced regional prediction system
(ARPS) and observation trend analysis data. Kunstmann
and Stadler (2005) and Kunstmann et al. (2008) coupled
mesoscale model version 5 (MM5) with the distributed
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hydrological model (WaSIM) for high-resolution runoff
simulation in the Mangfall River catchment and for
developing decision support system in the Volta Basin,
respectively. Jasper et al. (2002) compared the perfor-
mance of five different high-resolution numerical weather
prediction models (with resolutions between 2 km�2 km
and 14 km�14 km) for the prediction of peak flows in the
Alpine Ticino-Toce watershed. Yu et al. (2002) linked a
hydrologic model system (HMS) to a RCM, which was
designed to provide fine spatio-temporal output for
hydrologic and other applications, to model a series of
storm events passing over the Susquehanna River Basin
and to simulate various hydrologic processes in soil, land
surface, and groundwater hydrology using observed and
modeled storm events. Chen et al. (2006) coupled the fifth-
Generation Penn State University / the National Center for
Atmospheric Research (PSU/NCAR) MM5 with distrib-
uted water-heat coupled model (DWHC) to simulate
runoff, the result from coupled model was much better
than that driven by observation data of meteorological and
hydrological stations.
It is convenient to couple RCM with land surface

models. The results from this coupled model have been
validated by observed land surface states; however, the
validation of forcing data have been omitted, especially by
high temporal resolution observed data. As Cosgrove et al.
(2003) stated, “Nomatter how sophisticated their depiction
of land surface processes, or how accurate their boundary
and initial conditions are, such models will not produce
realistic results if the forcing data is not accurate.” Thus, it
is important to validate the accuracy of forcing data from
RCM before they are inputted to a land surface model.
The objective of this paper is to validate weather

research and forecasting model (WRF) simulating 5 km/1
h air temperatures by daily observed data from China
Meteorological Administration (CMA) stations using, by
hourly in-situ data from the Watershed Allied Telemetry
Experimental Research (WATER) Project (for a detail
introduction about WATER, Li et al., 2009), and by GCM
reanalysis, respectively. The paper was organized as
follows. Data and the WRF model description and
configuration are introduced in Sect. 2. The long-term
spatial-temporal temperature characteristic of the Heihe
River Basin, daily validation, hourly validation and
comparison with GCM reanalysis are described in Sect.
3. The discussion and conclusions are presented in Sects. 4
and 5, respectively.

2 Data and WRF model

2.1 WRF model and its configuration and initialization

The WRF (Michalakes et al., 1998; 2001) model is a next-
generation mesoscale numerical weather prediction system
that serves both operational and research communities. The

WRFV3.1 system consists of multiple dynamical cores,
preprocessors for producing initial and lateral boundary
conditions for simulations, and a four-dimensional varia-
tional data assimilation (4DVAR) system. WRF is built by
using software tools to enable extensibility and efficient
computational parallelism. The use of the WRF system has
been reported in a variety of areas, including storm
prediction and research, air quality modeling, wildfire,
hurricane, tropical storm prediction, and regional climate
and weather prediction (Michalakes et al., 2004). In this
study, WRF is used for the downscaling of weather and
climate at the scales from one kilometer to thousands of
kilometers, and it is used for deriving meteorological
parameters required for hydrological models. The model
uses a terrain-following hydrostatic pressure coordinate
system with permitted vertical grid stretching (Laprise,
1992). Arakawa-C grid staggering is used for horizontal
discretization. The model equations are conservative for
scalar variables. A detailed description of WRF is
presented in Skamarock et al. (2008). For this study,
two-way nested computational domains of 40�54�27 and
100�120�27 grid points and horizontal resolutions of
25 km and 5 km, respectively, were established. The first
domain covers most of the Gansu Province, China ranging
from 32.6° to 47.4°N in latitude and 92.4°–107.6°E in
longitude. The second domain covers the Heihe River
Basin, ranging from 37° to 43°N in latitude and 96.6°–
103.4°E in longitude (Fig. 1). The model is initialized by
real boundary conditions using NCAR-NCEP’s Final
Analysis (FNL) data (NCEP-DSS083.2, 2009), with a
resolution of 1° � 1° (111 km � 111 km). A ratio of 1∶5 is
maintained between the resolutions of the outer domain
and FNL data to ensure reliable boundary conditions for
the model. The WRF simulations were carried out on a
Dell R900, Ubuntu 9.10, g95 compiler with gcc.

2.2 Study area

This research was carried out in the Heihe River Basin,
China’s second largest inland river basin. The basin is
located between 97°24′–102°10′ E and 37°41′–42°42′ N
and covers an area of approximately 140000 km2. The
landscapes here are diverse, with an upstream to down-
stream distribution of glacier, frozen soil, alpine meadow,
forest, irrigated crops, riparian ecosystem, desert, and
gobi.

2.3 Data

Long-term of temperature from 2000 to 2009 has been
simulated in WRF model. The model was tested at 15
surface meteorological stations maintained by the CMA
and seven observation-strengthened stations established by
WATER. The data from the CMA stations were used for
daily validation and those of WATER for hourly validation.
All data in 2008 were used for comparison. Table 1 lists the
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geographical and annual mean surface air temperatures at
these stations.

3 Results

3.1 Spatial-temporal temperature characteristic of the Heihe
River Basin

Figure 2 is the spatial distribution map of the average 2 m
temperature simulated by WRF model from 2003 to 2009
in the Heihe River Basin. The average of 2 m temperature
from 2003 to 2009 for whole Heihe River Basin is around
277.9 K. Figures 3 (a1–a7) show the difference of the
average 2 m temperature of every year from that of total
years and Fig. 3b demonstrates the 2 m temperature change
trend from 2003 to 2009. Despite there are fluctuations in
the trend line, but the overall trend is upward, the annual
growth is around 0.1 K.

3.2 WRF output daily validation

Figure 4 shows the relationship of the daily surface air
temperatures between the WRF model simulation and the
observed data from the 15 surface meteorological stations
maintained by CMA. As is evident, the simulated and
observed surface temperatures show a significantly similar
trend, with a correlation more than 0.93.
Table 2 lists the mean bias error, the root-mean-square

error and the coefficient of determination between the
WRF-simulated and observed data. The absolute mean
bias error (MBE) for each station is less than 2°C, and the
MBEs of Ejina, Mazongshan and Alax are near zero,
which can be taken as unbiased estimations. For all
stations, the RMSEs are approximately 2°C.

3.3 WRF output hourly validation

Hourly observation data are available from the seven sites
supported by the WATER Project for 2008. Figure 5 shows
the relationship of the hourly surface air temperatures
between the WRF model simulation and the observation
data from the seven observation-strengthened stations of
WATER. Figure 6 compares the WRF simulation with
bilinear interpolation and observation data from the Arou
station in August. The original data for bilinear interpola-
tion are temperatures extracted from the first domain of the
WRF model at a 25 km resolution and were interpolated to
a 5 km resolution. The MBE, RMSE and R2 between the
observed and simulation data can be found in Table 3.

3.4 Comparison with GCM reanalysis

Reanalysis data are long-term and stable collections of
gridded atmospheric data, and are generated by a unified
data assimilation system for quality control and data
fusion, with the input data for this system including
ground-based observations, ship observations, balloon
observations, radiosonde wind observations, aircraft
observations, satellite observations and other information
(Kalnay et al., 1996; Kistler et al., 2001; Uppla et al., 2005;
Onogi et al., 2007). Reanalysis data from JRA-25, ERA-40
and NCEP-II were selected for the validation of the WRF
simulation. The features of JRA-25, ERA-40 and NCEP-II
are listed in Table 4. The Fortran program was used to
extract point temperature data from these reanalysis for
each station. All reanalysis temperature data are trans-
formed by topographic correction.
Figure 7 shows the comparison of MBE of the surface

air temperature between the observed and three analyses
and WRF simulations in the Heihe River Basin at the 15
stations. Obviously, the MBE of the WRF simulation is
less than the three reanalysis data, especially at the Ejina
and Mazongshan stations. The comparison at all stations
indicates that the dynamic downscaling data are more
reliable than the reanalysis data. Figure 7 compares the

Fig. 1 Nesting domain configuration for the numerical experi-
ment (the crosses indicate CMA stations, the red dots indicate
WATER stations)
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differences among the WRF simulation, NCEP reanalysis,
JRA reanalysis and station data, indicating that the WRF
simulation is more astringent than the others. Compared
with the bilinear interpolation result from the NCEP
reanalysis (Fig. 7), WRF simulated data are closer to the

station observed data. Figure 8 shows the relationship
between the Arou observed data and the WRF simulation,
NCEP reanalysis and JRA reanalysis data in August. The
NCEP and JRA reanalysis data were downscaled by
elevation with a fixed temperature lapse rate (0.65°C/100
m) from coarser resolution to a 5 km resolution to match
the resolution of the WRF output data.

4 Discussion

Downscaling is a method for obtaining high-resolution
climate or climate change information from relatively
coarse-resolution GCMs. Statistical downscaling derives
statistical relationships between observed small-scale
(often station level) variables and larger (GCM) scale
variables, and is used more frequently than dynamical
downscaling for surface temperature applications, such as
analog methods (Ngo-Duc et al., 2005), regression analysis
(Winkler, et al., 1997; Wilby et al., 1999; Hanssen-Bauer et
al., 2005), and neural network methods (Mpelasoka et al.,
2001). However, dynamical downscaling has a clearer
physical description than statistical downscaling. In our

Fig. 2 Spatial distribution map of 2 m temperature from 2003 to
2009

Table 1 Geographic and annual mean surface air temperatures at the validation stations

Station type Station name Station ID Altitude/m Latitude/°N Longitude/°E Ta/°C

CMA Ejina* 52267 940.5 41.57 101.04 9.99

Mazongshan* 52323 1770.1 41.48 97.02 5.23

Guaizihu 52378 960.0 41.22 102.22 10.13

Yumenzhen 52436 1526.0 40.16 97.02 7.71

Jinta 52447 1270.2 40.00 98.54 8.94

Jiuquan* 52533 1477.2 39.46 98.29 7.90

Gaotai 52546 1332.2 39.22 99.50 8.03

Alax 52576 1510.1 39.13 101.41 9.01

Tuole 52633 3367.0 38.48 98.25 – 1.94

Yeniugou 52645 3320.0 38.25 99.35 – 2.47

Zhangye 52652 1482.7 38.56 100.26 8.34

Qilian 52657 2787.4 38.11 100.15 1.75

Shandan 52661 1764.6 38.48 101.05 7.03

Yongchang 52674 1976.1 38.14 101.58 5.82

Menyuan 52675 2850.0 37.23 101.37 1.73

WATER Arou AR 3032.8 38.04 100.46 – 0.95

Binggou BG 3449.0 38.07 100.22 Apr –Dec

Dadongshu DDS 4146.8 38.01 100.24 – 5.44

Guantan GT 2835.2 38.53 100.25 Exclude Apr

Huazhaizi HZZ 1726.0 38.46 100.25 Jun –Dec

Maliantan MLT 2817.0 38.55 100.30
Jan – Jun
Nov –Dec

Yingkelvzhou YK 1519.1 38.86 100.41
Exclude May
Exclude Jul –Sep

Note: Stations marked with “*” are part of the WMO data that are already assimilated in the NCEP model
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research, the near-surface air temperature data by dynamic
downscaling agreed well with our daily and hourly
observed data.
Figures 6–8 show that the WRF simulation is better than

the reanalysis data or interpolation results. The compar-
isons of daily (Fig. 7) and hourly (Fig. 4, four times per
day: 00, 06, 12, 18) temperatures between the reanalysis
and WRF simulations show that the WRF simulation is
better than the reanalysis simulations. TheWRF simulation
(in Fig. 6) also yields better surface air temperature data
than those interpolated from the FNL data (FNL is an
initial for the WRF model).
WRF also has the ability of data assimilating of

observation data and remote sensing images in the
OBSGRID and WRF-Var modes under the support of the
WATER Project, producing rich observation data. With our
own data and remote sensing images in the WRF

simulation, the accuracy of surface temperatures will be
greatly improved.

5 Conclusions

In this study, theWRFmodel was used to generate 5 km/1 h
atmospheric forcing data for a hydrological scale model of
the Heihe River Basin. The WRF results were validated by
daily-observed data from CMA stations and hourly-
observed data from WATER sites. The daily validation
shows that the WRF simulation has good agreement with
the observed data. The R2 between the WRF simulation
and each station is more than 0.93, the absolute MBE for
every station is less than 2°C, and the MBEs of Ejina,
Mazongshan and Alxa are near zero with an R2 above 0.98,
which can be taken as an unbiased estimation. The MBE of

Fig. 3 Difference of the average 2 m temperature of every year from that of total years
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every site is approximately 2°C, and the R2 of every site is
more than 0.80, with the highest at 0.95, while the
computed and observed surface temperatures show a
significantly similar trend. The comparison between the
simulated and observed surface air temperatures shows

that the WRF succeeds in generating the meteorological
inputs required for hydrological simulation. The results
indicate that the dynamic downscaling air temperature
fields have good correlations with observed daily and
hourly data, and they are more reliable than the reanalysis

Fig. 4 Scatter plots of daily surface air temperature between the WRF simulation and station observation
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Table 2 MBE, RMSE and R2 between the WRF simulated daily surface air temperature and 15 CMA stations data

Station name Station ID MBE/°C RMSE/°C R2 95% confidence interval

Ejina 52267 0.21 2.15 0.98 ( – 0.02, 0.44)

Mazongshan 52323 0.00 1.88 0.98 ( – 0.20, 0.20)

Guaizihu 52378 – 0.67 2.13 0.98 ( – 0.90, – 0.45)

Yumenzhen 52436 – 1.31 2.54 0.98 ( – 1.58, – 1.04)

Jinta 52447 – 0.90 2.53 0.98 ( – 1.16, – 0.64)

Jiuquan 52533 – 1.15 2.12 0.98 ( – 1.37, – 0.93)

Gaotai 52546 – 0.78 1.99 0.98 ( – 1.00, – 0.57)

Alax 52576 – 0.16 2.11 0.98 ( – 0.38, 0.06)

Tuole 52633 1.57 2.04 0.96 (1.36, 1.78)

Yeniugou 52645 1.77 2.49 0.94 (1.51, 2.03)

Zhangye 52652 – 0.77 1.82 0.98 ( – 0.96, – 0.58)

Qilian 52657 0.91 2.01 0.97 (0.70, 1.12)

Shandan 52661 1.27 1.74 0.98 (1.09, 1.45)

Yongchang 52674 1.12 1.82 0.98 (0.93, 1.31)

Menyuan 52675 1.76 2.30 0.94 (1.52, 2.00)

Notes: MBE: mean bias error; RMSE: root-mean-square error; R2: coefficient of determination

Fig. 5 Scatter plots of hourly surface air temperature between the WRF simulation and WATER observation
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Fig. 6 Comparison of hourly surface air temperatures among the WRF-simulated, bilinear interpolation and observed data for the Arou
station

Table 3 MBE, RMSE and R2 between the WRF simulated hourly surface air temperature and seven WATER in-situ data

Station ID MBE/°C RMSE/°C R2 95% confidence interval

AR 0.35 2.87 0.92 (0.29, 0.41)

BG – 1.46 2.69 0.93 ( – 1.52, – 1.40)

DDS – 1.19 2.21 0.94 ( – 1.24, – 1.14)

GT – 0.66 1.71 0.94 ( – 0.70, – 0.62)

HZZ 0.70 2.48 0.94 (0.65, 0.75)

MLT 0.70 3.09 0.92 (0.63, 0.77)

YK 1.30 3.16 0.94 (1.23, 1.37)

Table 4 Features of JRA-25, ERA-40 and NCEP-II

Name Organization Reanalysis period Resolution Data assimilation method

JRA-25 JMA/CRIEPI 1979 – present T106 L40 3D-Var

ERA-40 ECMWF Sep 1957 –Aug 2002 TL159 L60 3D-Var

NCEP-II NCEP/DOE 1979 – present T62 L28 3D-Var

Notes: T and TL indicate the wave transition numbers; L indicates the number of vertical levels; T106 and TL159 are equivalent to a grid interval of 120 km, and T62 is
200 km

Fig. 7 Comparison of the MBE of the surface air temperatures between the observed and three reanalysis and WRF simulations in the
Heihe River Basin (JRA-25, ERA-40 and NCEP-II: monthly MBE for ten years (1991–2000), WRF simulation: daily MBE for 2008)
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data. The WRF model is effective for downscaling air
temperature.
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