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a  b  s  t  r  a  c  t

Soil  moisture  (SM)  plays  a fundamental  role  in  the land–atmosphere  exchange  process.  Spatial  estimation
based  on  multi  in  situ  (network)  data  is  a critical  way  to understand  the  spatial  structure  and  variation  of
land  surface  soil  moisture.  Theoretically,  integrating  densely  sampled  auxiliary  data  spatially  correlated
with  soil  moisture  into  the  procedure  of spatial  estimation  can  improve  its  accuracy.  In this  study,  we
present  a  novel  approach  to  estimate  the  spatial  pattern  of  soil  moisture  by  using  the  BME  method  based
on wireless  sensor  network  data  and  auxiliary  information  from  ASTER  (Terra)  land  surface  tempera-
ture  measurements.  For  comparison,  three  traditional  geostatistic  methods  were  also  applied:  ordinary
kriging  (OK),  which  used  the  wireless  sensor  network  data  only,  regression  kriging  (RK)  and  ordinary
co-kriging  (Co-OK)  which  both  integrated  the  ASTER  land  surface  temperature  as a covariate.  In Co-OK,
LST was  linearly  contained  in  the  estimator,  in  RK,  estimator  is  expressed  as  the  sum of  the  regression
estimate  and  the kriged  estimate  of  the  spatially  correlated  residual,  but  in  BME,  the  ASTER  land  surface
temperature  was  first  retrieved  as  soil  moisture  based  on the linear  regression,  then,  the t-distributed
prediction  interval  (PI)  of soil  moisture  was  estimated  and  used  as  soft  data  in  probability  form.  The
results  indicate  that  all three  methods  provide  reasonable  estimations.  Co-OK,  RK  and  BME  can  provide  a
more accurate  spatial  estimation  by integrating  the  auxiliary  information  Compared  to  OK.  RK and  BME
shows  more  obvious  improvement  compared  to  Co-OK,  and  even  BME  can  perform  slightly  better  than
RK.  The  inherent  issue  of  spatial  estimation  (overestimation  in  the  range  of  low  values  and  underestima-
tion  in the  range  of  high  values)  can  also  be further  improved  in  both  RK  and  BME.  We  can  conclude  that
integrating  auxiliary  data  into  spatial  estimation  can  indeed  improve  the  accuracy,  BME  and  RK  take  bet-
ter  advantage  of  the  auxiliary  information  compared  to Co-OK,  and  BME  outperforms  RK by integrating
the  auxiliary  data  in  a probability  form.

© 2014  Elsevier  B.V.  All  rights  reserved.

Introduction

Soil moisture (SM) plays a fundamental role in the
land–atmosphere exchange process because it controls both
evaporation from bare soil and transpiration from vegetated areas.
Many scientific studies and applications require global, continental
or regional soil moisture data to represent the initial state for the
soil moisture variables, just like forecasts of weather variations,
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models of plant growth and carbon flux and models of land
surface hydrological processes etc. A number of studies have been
conducted to obtain soil moisture estimates from various obser-
vations and models (Vereecken et al., 2008; Wang and Qu, 2009;
Guswa et al., 2002), but more often, the large spatial–temporal
variation results in very uncertain estimation. Obtaining accurate
soil wetness information by remote sensing techniques has great
potential and is the focus of ongoing research, especially after the
operation of the Soil Moisture and Ocean Salinity (SMOS) (Kerr
et al., 2010), Aquarius (Le Vine et al., 2010), and the launch of Soil
Moisture Active Passive (SMAP) in future (Entekhabi et al., 2010).
Monitoring land surface soil moisture by ground-based techniques
can also be valuable, for drought monitoring, precision agriculture,
and especially for the validation of remote sensing soil moisture

http://dx.doi.org/10.1016/j.jag.2014.03.003
0303-2434/© 2014 Elsevier B.V. All rights reserved.
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products (Jackson et al., 2009, 2011). With the development of
wireless communication techniques, the wireless sensor network
(WSN) has been increasingly used in eco-hydrological monitoring
(Akyildiz et al., 2002; Ruiz-Garcia et al., 2009). This technology
makes it possible to take simultaneous measurements of regional
soil moisture, unlike conventional ground-based methods (Bogena
et al., 2010).

Soil moisture information from WSN  can be regarded as a multi-
point simultaneous survey. To understand the spatial distribution
and variation of soil moisture or to compare it to remote sensing
products, we need to estimate the soil moisture distribution map
or up-scale to a certain scale. Traditional geostatistics, such as krig-
ing, is a powerful interpolation tool that quantifies and reduces
the uncertainties of estimation and minimizes investigation costs,
and has been used to provide linear unbiased predictions at un-
sampled locations for over four decades (Burgess and Webster,
1980; Cressie, 1990). The estimation accuracy of the kriging method
is usually limited by the density and distribution of sample sites.
Theoretically, if additional covariates which are spatially corre-
lated with soil moisture and more easily or intensively sampled
are integrated into the estimator, the estimation accuracy may  be
improved. Spatial estimation methods (such as co-kriging, regres-
sion kriging, and universal kriging, et al.) that account for covariates
could play an important role here. These methods could conceiv-
ably result in a considerable reduction of costs while achieving a
comparable degree of accuracy by using fewer relatively expensive
variables and more relatively inexpensive covariates (Stein et al.,
1988; Stein and Corsten, 1991; Zhang et al., 1992, 1997; Wu  et al.,
2003), especially in the under-sampled cases (Yates and Warrick,
1987). Universal kriging and regression kriging differ in the com-
putational steps, however, the resulting predictions and prediction
variances are the same. Co-kriging (Co-OK) is mainly developed
for situations in which the auxiliary information is not spatially
exhaustive (Knotters et al., 1995), in cases where the covariates
are available as maps, regression kriging (RK) will generally be pre-
ferred over Co-OK, although Co-OK may  in some circumstances give
superior results (Asli and Marcotte, 1995; Goovaerts, 1999; Rivero
et al., 2007; Moral, 2010; Hernández-Stefanoni et al., 2011). Stud-
ies have also demonstrated that Co-OK is only minimally superior
to ordinary kriging when the auxiliary variables are not highly cor-
related with object variables (Asli and Marcotte, 1995; Triantafilis
et al., 2001; Wu  et al., 2009), and in some cases, the covariates
were of little significance for prediction due to underweighting (the
weights of covariates sum to zero and are often of small magnitude)
(Goovaerts, 1998). Thus, different methods that may  fit certain situ-
ations better. New methods are needed in spatial estimation of soil
moisture which can incorporate auxiliary data of different origin
and reliability in a systematic and rigorous way.

Bayesian maximum entropy (BME) (Christakos, 1990a, 1990b,
1991, 2000), which belongs to the field of modern spatiotem-
poral geostatistics, provides a systematic and rigorous approach
for integrating physical knowledge into spatiotemporal analysis,
including statistical moments of any order, physical laws, scien-
tific theories, empirical relationships, and uncertain observations
(Christakos and Serre, 2000; Christakos et al., 2001). As a signif-
icant generalization of commonly used geostatistical techniques,
it does not make the Gaussian distribution hypothesis, and it can
estimate variables by non-linear prediction (Christakos, 1990a;
Christakos and Li, 1998). In the two decades since its initial pro-
posal, BME  has been successfully used in many research fields. In
the field of environment and public health, the PM10 distribution
in the state of North Carolina was studied by using the Bayesian
maximum entropy (BME) mapping method (Christakos and Serre,
2000). Another study focused on the spatiotemporal distribution of
ozone (Yu et al., 2009; Bogaert et al., 2009). BME  can readily con-
sider uncertain yet valuable information at the estimation points.

Additionally, in the framework of BME, good estimates of child-
hood asthma prevalence at fine spatial resolution were obtained
by nonlinear integration of prevalence data aggregated over large
areas and the data obtained at the fine scale of interest (Lee, 2005;
Lee et al., 2009). In the field of soil science, D’Or et al. (2001) and
D’Or (2003) investigated the use of BME  for estimating soil textural
fractions in space by integrating a small hard data set with a larger
soft data set. The results show that BME  is more accurate than sim-
ple kriging estimates, thus offing a better picture of the soil reality.
Similarly, in Bogaert and D’Or (2002), the thematic maps and the
data from laboratory analysis were incorporated into BME  to obtain
a more accurate estimation map  of soil texture. BME  illustrates the
advantages of using soft information on a sound theoretical basis.
Additionally, as one of the spatiotemporal knowledge synthesis and
mapping methods, BME  has been successfully applied in the data
fusing field for the fusing of observations and model predictions
(Christakos et al., 2004; Nazelle et al., 2010) or multi-sensors data
(Li et al., 2012, 2013a,b). Only a fraction of the possible applica-
tions are listed above, but this list still shows that BME  performs
wonderfully in the field of spatial (or spatiotemporal) estimation,
especially for the fusing of uncertain auxiliary information. BME
has also been shown to be more accurate and physically meaning-
ful than classical geostatistics (e.g., Christakos and Li, 1998; Serre
and Christakos, 1999; Douaik et al., 2004; Pang et al., 2010). In this
study, we  attempt to introduce BME  as a spatial estimator of soil
moisture.

In the ground ecosystem, both land surface soil moisture and
land surface temperature (LST) vary spatially due to soil type, land
cover, and land use, and they vary temporally with the time of day
and the season of the year. Studies show that the LST maximum
during moist conditions occurs later in the day than during dry
conditions, and land surface soil moisture and LST have been found
to be negatively correlated (Lakshmi et al., 2000; Sun and Pinker,
2004), which indicates that valuable information about the spa-
tial distribution of soil moisture can be obtained from the LST. The
purpose of this study is to present a novel approach to estimate
the spatial pattern of soil moisture by using BME  method based on
wireless sensor network data and the auxiliary information from
ASTER (Terra) LST. For comparison, traditional geostatistic meth-
ods were also applied: ordinary kriging (OK), co-kriging (Co-OK)
and regression kriging (RK).

Materials and methods

Study area and soil moisture wireless sensor network

The experimental area involved in this study (Fig. 1) was  located
in the Zhangye artificial oasis in the middle reaches of the Heihe
River Basin (HRB) in northwestern China (38.871◦ N, 100.359◦ E).
As a typical inland river basin characterized by distinct cold and
arid landscapes distributed upstream to downstream, the HRB has
long served as a test bed for integrated watershed studies and
hydrological experiments (Cheng, 2009). Comprehensive experi-
ments such as HEIFE (Hu et al., 1994) and WATER (Li et al., 2009)
have taken place in the HRB, and HiWATER (Li et al., 2013a,b)
is still in progress. The soil moisture wireless sensor network
(WATERNET) shown in Fig. 1 was part of the first thematic experi-
ment of HiWATER, which is referred to as Multi-Scale Observation
Experiment on Evapotranspiration over heterogeneous land sur-
faces 2012 (MUSOEXE-12). The experiment included two nested
matrixes: one large experimental area (composed of oasis and
desert) covering an area of 30 km × 30 km and one kernel exper-
imental area (completely in the oasis) covering 5.5 km × 5.5 km.
WATERNET was located in the kernel experimental area, and
the observations lasted from May  2012 to September 2012. The
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Fig. 1. Overview of the study area. The sub-image in the upper left corner is the DEM of HRB. The sub-image in the lower right corner is the true color image of SPOT covering
the  key study area.

precipitation in the Zhangye oasis is approximately 100–250 mm
per year. Irrigation is the main water source. The potential evap-
oration is as high as 1200–1800 mm  per year (Li et al., 2013a,b).
The major crops there are maize, wheat, and vegetables. In this
study, we chose the approximately 4.5 km × 5.0 km area covered
by WATERNET as the key study area (Fig. 1). WATERNET consists of
50 nodes, and each node includes soil moisture and soil tempera-
ture observations for two layers (4 cm,  10 cm). The measurements
of soil moisture are based on the frequency-domain reflectometry
method using a Hydro Probe II (HP-II) sensor. The design of WATER-
NET, the data communication style and other information can be
found in Jin et al. (2012). In the key study area, there are also thir-
teen Auto Weather Stations (AWS), as shown in Fig. 1. All of the AWS
except AWS4 (in the underlying of village) include the soil mois-
ture observations at a depth of 4 cm.  The soil moisture sensors for
AWS12, AWS13, and AWS14 are ECH2O-5 (Decagon Device). For the
left AWS, the sensors are CS616 (Campbell). Comparative work was
carried out before the installation of all the soil moisture sensors in
the field. The results show that the Hydra Probe II has a mean under-
estimation of 0.025 m3/m3 compared with the gravimetric method
for the saturated soil. CS616 gives an overestimation of 0.035, and

ECH2O-5 has an underestimation of 0.085. In dry soil, the observa-
tion values of the three sensors were all less than 0.02 m3/m3. All
of the soil moisture data used in this study was linearly calibrated
based on the comparative data.

Data summary

In this study, WSN  data from the following three periods were
used: May  30, 2012; June 15, 2012; and June 24, 2012. ASTER
(Terra) image data were available for each period, and some of
the AWSs had already started to run normally at these times. At
these three stages, the study area still exhibited sparse vegetation
cover, and the land surface wetness and land surface temperature
(LST) showed an obvious negative correlation. Therefore, the LST
retrieved from ASTER can be properly regarded as auxiliary infor-
mation in the spatial estimation of soil moisture. With regard to the
WSN  data, we  used the daily mean soil moisture at 4 cm depth and
assumed that the WSN  observations were sufficiently accurate to
be considered as hard data. The ASTER LST used here was retrieved
by the radiative transfer equation method (Ottlé and Stoll, 1993;
Zhou et al., 2012). In BME, ASTER LST was retrieved as soil moisture

Table 1
Summary of WSN  data used in the study.

Date Data No. Max  (%) Min  (%) Range (%) Mean (%) SD (%)

May  30, 2012 SM (WATERNET) 47 38 6 32 18 7.38
June  15, 2012 SM (WATERNET) 45 32 13 20 23 4.25
June  24, 2012 SM (WATERNET) 42 41 11 30 20 7.13

Note: Units for max, min, range, mean, SD are m3/m3.



Author's personal copy

S. Gao et al. / International Journal of Applied Earth Observation and Geoinformation 32 (2014) 54–66 57

Table  2
Summary of ASTER LST data used in the study.

Date Data Area Max  (K) Min  (K) Range (K) Mean (K) SD (K)

May  30, 2012 LST (ASTER) 50 × 55 (90 m)  324.08 298.14 25.94 314.55 5.84
June  15, 2012 LST (ASTER) 50 × 55 (90 m) 314.65 298.34 16.31 306.05 2.09
June  24, 2012 LST (ASTER) 50 × 55 (90 m)  313.19 295.85 17.34 302.66 2.88

that was expressed as soft data in probability form. The creation
of soft data will be discussed in Section “Preparation of soft data”.
Tables 1 and 2 provide the summary statistics of the WSN  data and
the ASTER LST. Because of maintenance mistakes, only 47 of the 50
WSN  nodes had normal observations on May  30. Likewise, there
were 45 good nodes on June 15 and 42 good nodes on June 24. In
this study, relative to the study area of 4.5 km × 5 km and the study
resolution of 90 m (a total of approximately 2500 pixels), the hard
data here should be considered an under-sampled case (Bartlett
et al., 2001). As shown in Table 1, the soil moisture on May  30 had
the lowest relative mean value but the largest standard derivation
(SD) among the three periods. These data indicate that the study
area on May  30 was in the driest of the three stages but had large
spatial variation. Table 2 shows similar statistical characteristics
for the LST. It should be noted that the indices in Table 2 are the
statistical results of non-building pixels. The area of building in the
ASTER LST has been masked because it would introduce incorrect
reference information as the auxiliary data in the spatial estimation
of soil moisture based on spatial correlation.

Preparation of soft data

Including soft data in BME  is an important way  to integrate
uncertain information into the estimation. Properly expressed soft
data can enhance the value of uncertain information. Soft data can
be incomplete and/or qualitative observation statements linked
to experts’ opinions, experiences, intuition, questionnaires, equip-
ment shortcomings, etc. (Christakos et al., 2002). Probability and
interval soft data, in particular, are very common in real practice.
Probability soft data can be the result of measurement error,
physical interpretation, etc., and they are approximately normally
distributed or Student’s t-distributed (Christakos and Li, 1998;
Christakos et al., 2001). Interval soft data with upper and lower
bounds do not fit a probability distribution but do have physical
meanings (Douaik et al., 2005). In this study, a probability state-
ment was used and expressed as Student’s t-distributed data by
estimating the prediction interval (PI) of linear regression. Eq. (1)
shows the empirical linear relationship between SM (P̂) and LST (T).
We can estimate the PI according to Eq. (2) (Younger, 1985):

P̂ = aT + b (1)

Pinterval = P̂i ± tn−2,0.025ST ·P

√
1 + 1

n
+ (Ti − T̄)

2

STT
(2)

Here, Yinterval is the PI corresponding to each estimated soil mois-
ture P̂i relative to the land surface temperature Ti, is the sample size
of the regression, tn−2,0.025 is the critical value of the t-distribution
with degrees of freedom of (n − 2) and a confidence level of 95%, ST·P
is the standard deviation of the regression error, T̄ is  the mean value

of the land surface temperature, and STT is the sum of the square
of the deviations. SM of WSN  and the corresponding nearest pixel
value of the ASTER LST are used to obtain the fitted relationship
shown in Eq. (1). The regression correlation coefficients (in Table 3)
show moderate correlation between SM of WSN  and ASTER LST in
the study area. By using Eqs. (1) and (2), LST can be expressed as
probability soft data. Fig. 2 shows the SM-LST linear relationship,
the corresponding PI and the probability distribution at the spec-
ified LST in each period. All of the parameters for the three dates
involved in Eqs. (1) and (2) can be found in Table 3.

Methods

As mentioned above, four spatial estimation methods were
involved in this study. Here, only an outline of these methods
is given; in-depth discussions can be found in the references
cited. The performances of these methods were evaluated by using
a cross-validation (leave-one-out) method and an absolute vali-
dation method introduced later.

Variogram and cross-variogram
The variogram and cross-variogram contain spatial correlation

information, and they are the main components of geostatistical
methods. Assuming the intrinsic hypothesis, the following function
gives a measure of how well a random variable is correlated in space
as a function of separation distance in the case of two variables
(Yates and Warrick, 1987; Boyer et al., 1996):

�ij(h) = 1
2N

N(h)∑
k=1

{[Zi(vk + h) − Zi(vk)][Zj(Vk + h) − Zj(Vk)]} (3)

Here, Vk denotes the spatial location of the sample, � i,j indicates
the semivariance (when i = j) with respect to the random variable
Zi at a separation distance h and N(h) is the number of pairs of
Zi(Vk) and Zj(Vk) in a given lagged distance interval (h + dh). When
i /= j, � i,j is the cross-semivariance as a function of h. In the case
of the cross-variogram, the semivariance of two  variables and the
cross-semivariance must satisfy the Cauchy-Schwartz inequality:
|�ij(h)| ≤ |�ii(h)�jj(h)|1/2 (Yates and Warrick, 1987). In this study,
two nested variogram models were used. Model (1) is a nugget-
exponential model (Eq. (4)), and model (2) is a nugget-spherical
model (Eq. (5)) (Zhang, 2005):

�(h) = C0 + C1

(
1 − e

3h
a

)
(4)

�(h) =

⎧⎨⎩ C0 + C1

[
1.5

(
h

a

)
− 0.5

(
h

a

)3
]

, 0 ≤ h ≤ a

C0 + C1 h > a

(5)

Table 3
Parameters of the linear regression and summary statistics of the soft data.

Date Model CR a b R2 X̄ SXX sXY n tn−2,0.025

May  30 Linear 0.66 −0.94 318.00 0.44 316.79 1232.07 5.59 47 2.0141
June  15 Linear 0.53 −1.08 351.45 0.28 306.05 190.73 3.61 45 2.0167
June  24 Linear 0.59 −1.64 517.06 0.35 303.44 279.94 5.67 43 2.0195

Note: CR, coefficient of correlation; a, b, parameters of linear regression; R2, coefficient of determination. Others are the same to variables in Eq. (2).
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Fig. 2. SM-LST scatters plots, linear regression and the scheme of probability soft data. (a)–(c) are shown separately for May  30, 2012, June 15, 2012 and June 30, 2012. The
red  line (reg in the legend) indicates the regression line. The green lines (PIup and PIdown in the legend) indicate the prediction interval at a confidence level of 95%. The
blue  curve (pd in the legend) indicates the probability distribution of soil moisture soft data corresponding to the smallest value of temperature. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of the article.)

Here, �(h) is the semivariance; C0 represents a nugget, which is the
minimum variability observed or the ‘noise’ at a distance of 0; C1 is
the structural variance, C0 + C1 represents the sill variance; a is the
range that stands for the correlation length in geostatistics.

Ordinary kriging, ordinary co-kriging and regression kriging
Our study area is in the central part of the oasis, and no signifi-

cant spatial trend of soil wetness can be found, so the soil moisture
observations are assumed to meet the requirements of second-
order stationarity for geostatistical inference and are assumed to
be isotropic. The ordinary kriging (OK) estimator, as an optimally
linear unbiased method, can be expressed as follows (Journel and
Huijbregts, 1978):

Z∗(V0) =
n∑

i=1

�iZ(Vi) (6)

Optimal estimation requires the minimum variance of errors:

�k = Var [Z(v0) − Z∗(v0)] = E

⎧⎨⎩
[

Z(v0) −
n∑

i=1

�iZ(vi)

]2
⎫⎬⎭ = min  (7)

To ensure unbiased estimation, the following constraint condition
must be added:

n∑
i=1

�i = 1 (8)

By applying the Lagrange Multiplier Method (LMM)  with Eq. (7)
as the object function and Eq. (8) as the constraint, and with the
covariance information from the variogram, the weight coefficients
�i and Lagrange multiplier � can be obtained, as can the opti-
mal  estimator Z*(v0) and the estimation variance �k (Journel and
Huijbregts, 1978).

Similar to OK, the estimator of co-kriging (Co-OK) can be
expressed as follows (Myers, 1982):

Z∗
1(v0) =

n1∑
i=1

�1iZ1(v1i) +
n2∑
j=1

�2jZ2(v2j) (9)

Eq. (10) provides optimal estimation, and as a result of the addi-
tion of a covariate to the estimator, another constraint condition,
Eq. (12), has to be considered in addition to Eq. (11) to maintain
unbiased estimation.
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�c = Var
[
Z1(v0) − Z∗

1(v0)
]

= E

⎧⎪⎨⎪⎩
⎡⎣Z1(v0) −

n1∑
i=1

�1iZ1(v1i) −
n2∑
j=1

�2jZ1(v2i)

⎤⎦2
⎫⎪⎬⎪⎭

= min  (10)

n1∑
i=1

�1i = 1 (11)

n2∑
j=1

�2j = 1 (12)

With the covariance information from the semivariance and
cross-semivariance, the coefficients �1i and �2j can be obtained,
as well as the estimator Z∗

1(v0) and the estimation variance �c

(Myers, 1982). Commonly, the primary variable and the covariate
are positively or negatively correlated, and the absolute coeffi-
cient of correlation is greater than 0.5 (Asli and Marcotte, 1995). Of
course, the covariate should be more intensively sampled, in which
case the Co-OK method can be used in the most advantageous way.
In this study, LST retrieved from remote sensing data can fully meet
the requirements as an exhaustive covariate.

Regression kriging (RK) is an approach that combines a simple
or multiple regression model with simple kriging of the regres-
sion residuals (Hengl et al., 2007). The regression predictions and
residuals at all sampled locations were obtained by the regres-
sion, the experimental variogram of the residuals was  computed
and modeled, and the RK estimator is then written as the sum of
the regression estimate and the kriged estimate of the spatially
correlated residual values at vi:

Z∗(v0) = m∗(v0) +
n∑

i=1

�iR(vi) (13)

where, m*(v0) is the regression estimate for location v0, and R(vi)
are the residuals of the n observation points, R(vi) = Z(vi) − m(vi).
The estimation of optimal weights �i can refer to the method of
simple kriging. The linear regression model was introduced in Sec-
tion “Preparation of soft data”, and the experimental variogram of
the residuals was computed and modeled in Section “Variogram
and cross-variogram”.

Bayesian maximum entropy (BME)
The concept of BME  appeared more than two decades ago

(Christakos, 1990b) and has been continuously developed and
expanded (Christakos and Li, 1998; Christakos, 2000). BME  intro-
duces a theoretically sound and technically operational mapping
method that makes it possible to incorporate measurements as
well as various knowledge bases (soft data) in a logical manner
(Christakos and Li, 1998). According to Christakos (2000), BME  was
generally introduced in the following three epistemological stages:
a prior stage, a meta-prior stage, and a posterior stage. The general
scheme of the method is depicted in Fig. 3.

The objective of the prior stage is to compute the joint pdf
fG(xmap), given general knowledge G, via the application of max-
imum entropy theory. The variable xmap consists of a vector of
points, xsoft, xhard, and xk, which denote the values of the soft and
hard data points and unknown values at the estimation point,
respectively. The expected information contained in the pdf can
be expressed as Eq. (14) based on the Shannon information mea-
sure (Shannon and Weaver, 1948). The general knowledge G in

Fig. 3. Flowchart of the BME  method.

Eq. (14) is expressed as g˛(xmap), a set of functions of xmap such
as the mean and covariance moments. The shape of the prior pdf
fG(xmap) should be derived by means of a procedure that maximizes
the expected information (Eq. (14)) and takes into consideration
the constraints (g˛(xmap)), which represent general knowledge. Eq.
(15) gives the object function of the Lagrange multipliers method
(LMM)  for maximizing the expected information by introducing
the Lagrange multiplier �˛. E[g˛(xmap)] is the expected value of
g˛(xmap) (Christakos, 2000; Christakos and Li, 1998).

InfoG[xmap] = −
∫

dxmapfG(xmap) log fG(xmap) (14)

M[fG(xmap)] = −
∫

dxmapfG(xmap) log fG(xmap)

−
N∑
˛

�˛

[∫
g˛fG(xmap)fG(xmap)dxmap − E[g˛(xmap)]

]
(15)

At the meta-prior stage, new information is collected for the
points to be estimated. This can include either specific sets of actual
measurements (hard data) or soft data of various forms not consid-
ered at the prior stage (Christakos and Li, 1998). In this study, the
soft data fS(xsoft) were prepared in probability form, as detailed in
Section “Preparation of soft data”. At the posterior stage, the poste-
rior pdf fK (xk|xdata) is expressed in terms of the prior pdf, the new
data and information considered at the meta-prior stage as follows:

fK (xk|xdata) = A−1

∫
dxsoftfS(xsoft)fG(xmap) (16)

A =
∫

dxsoft fS(xsoft)fG(xdata) (17)

Eq. (16) is a formulation of Bayes law, in which xdata serves
as a pointer for a context of knowledge, and (xk|xdata) stands for
the possible values xk of the map  in the context specified by xdata.
Hence, empirical knowledge is encoded in terms of the conditional
pdf fK (xk|xdata) (Christakos and Li, 1998). From the posterior pdf
fK (xk|xdata), two modes of estimator (mean in Eq. (18) and mode in
Eq. (19)) can be used:

x∗
k =

∫
xkfk(xk|xdata)dxk (18)

x∗
k = max(fK (xk|xdata)) (19)
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Here, x∗
k

is the estimation of xk. In this study, the estimator of Eq.
(19) was employed. A more detailed discussion of the epistemic
principles and mathematical analysis leading to the BME  formulas
above may  be found in Christakos and Li (1998) and Christakos
(2000). The BMElib library (Christakos et al., 2002) is helpful
for implementing the method. Note that the covariance function
was needed in BME  to provide the spatial covariance. Under the
hypothesis of second order stationary, we can obtain the following
relationship between the variogram and the covariance function:
C(h) = sill − �(h) (Schabenberger and Gotway, 2004). Thus, the
covariance function can be obtained simply based on the variogram
modeled in Section “Variogram and cross-variogram”. What also
should be noticed is that the auxiliary data (ASTER LST) can be use-
ful only in the three periods introduced above, so the BME  method
in this study was only tested in the case of spatial estimation, even
though BME  can also provide excellent performance in the spa-
tiotemporal analysis.

Methods of validation
In this study, the presentation of the spatial estimation is evalu-

ated by two strategies. One strategy is a commonly used method of
cross-validation, and the other is validation by an extra dataset that
we define as absolute validation. The extra dataset was composed
of the soil moisture observations from the auto weather station
(AWS). Additionally, the following three statistical indicators (Eqs.
(20)–(22)) are used to quantitatively evaluate the accuracy of the
results: root-mean-squared error (RMSE), correlation coefficient
(CR), and mean bias (bias).

RMSE =

√√√√ n∑
k=1

(x∗
k

− xk)2

n
(20)

CR =
∑n

k=1(x∗
k

− x̄∗)(xk − x̄)√∑n
k=1(x∗

k
− x̄∗)2

√∑n
k=1(xk − x̄)2

(21)

Bias =
∑n

k=1(x∗
k

− xk)

n
(22)

Results and discussion

Variogram and cross-variogram analysis

The semivariance of SM,  residual, LST, and the cross-
semivariance are shown in Fig. 4 as a function of spatial lag h. The
experimental semivariance values are shown with circle-marked
scatters, and the theoretical models fit to the scatters are displayed
as black curves. Table 4 shows all of the parameters of the fitted
theoretical models. In most cases, model (1) was preferred. Model
(2) was used only for the cross-variogram on May30, 2012. R2 in
Table 4, especially for models of the covariates, are all large enough
to indicate that the theoretical model represents the actual semi-
variance well. Here, C0 and C0 + C1 for the cross-variograms were
negative because of the negative correlation between SM and LST.
The sill variances (C0 + C1) of SM for May  30, 2012 and June 24,
2012 are relatively larger compared to that of June 15, 2012, which
shows that the spatial variation of SM is greater on May  30, 2012
and June 24, 2012 than on June 15, 2012. Although it was moder-
ately correlated with SM,  LST on June 24, 2012 did not show high
spatial variation (sill variance) as on May  30, 2012. This may  be due
to the heavier vegetation cover on June 24, 2012, which has more
of an effect on LST of ASTER. Generally, it was also noted that the
residual variogram have approximately the same form and nugget
but a somewhat smaller sill and range. The range for variograms of
SM,  LST, and the cross in the same period are basically similar, it is

approximately 1800 m for May  30, 2012, approximately 1500 m for
June 24, 2012, and approximately 1100 m for June15, 2012. In all
three periods, the semivariance and the cross-semivariance obey
the Cauchy-Schwartz inequality mentioned above.

Spatial estimation of soil moisture

The spatial distribution of soil moisture in the study area was
estimated at a resolution of 90 m by the four methods introduced
previously. The methods were implemented in the programming
environment of MATLAB. We  suppose that the soil moisture in each
pixel area of the estimation map  is homogeneous, so the pixel value
is represented by the estimation value of the pixel center point.

Fig. 5 shows the soil moisture distribution map of the study area
in the three periods obtained by the four methods. The white areas
in the maps represent the masked areas of buildings that appear just
like islands and have no correlation with the surrounding environ-
ment. In each period (each column of Fig. 5), the spatial structure of
soil moisture for all four methods is generally similar, and they even
provided a similar changing range of wetness. Obviously, a larger
spatial variation of wetness occurred globally on May 30, 2012 and
June 24, 2012, but the wetness appears to be more homogeneous
on June 15, 2012. Locally speaking, the change in the map  of OK
is smooth, whereas the grid phenomenon is clearer in Co-OK and
RK. Compared with OK and Co-OK, the RK and BME  map  exhibits
more spatial variation information, especially in the border region
of the study area where the point observations are relatively sparse.
Visual comparisons of the estimation results can only provide pre-
liminary realizations about the spatial distribution of soil moisture.
For the presentation of each estimation method, quantitative vali-
dation work is also necessary. We  discuss this work in the following
section.

Cross-validation

After the generation of a soil moisture distribution map,
cross-validation was  applied (leave-one-out method). In the cross-
validation, x∗

k
is defined as the estimated soil moisture at a location

where the actual value xk was  available but removed prior to spa-
tial estimation. Thus, the cross-validation error can be defined as
(x∗

k
− xk). Figs. 6–8 show scatter plots and error distributions of

cross-validation in the three experimental periods. Table 5 contains
the corresponding statistical indicators.

From the indicator of Bias in Table 5, we can see that all the
methods provide excellent unbiased estimations. The CR of Co-OK
is only slightly larger than that of OK, but both of which show mod-
erate correlation between the estimations and observations on May
30, 2012 and June 24, 2012, and even show low correlation on June
15, 2012, however the majority of scatters are located around the
1:1 line, according to Fig. 6. Additionally, we can find that the CR
for both RK and BME  are obviously larger than that of Co-OK. The
CR of RK can reach 0.61 on May  30, 2012, CR of BME can reach can
reach 0.71 on June 24, 2012 and even 0.76 on May  30, 2012, and CR
of BME  are large than that of RK in the mass. RMSE of SM predicted
by OK ranged from 0.0447 to 0.0645 m3/m3 in the three periods,
by contrast the other three methods which integrated the auxiliary
data can all provide more accurate estimation, especially the BME
method, and the RMSE of which is obviously smaller than others.
All of above data suggest that Co-OK can slightly outperform OK
even though also integrated the LST information, both RK and BME
can incorporate the information of LST more efficiently than Co-OK,
and BME  can perform better than RK.

According to the distribution of scatters and the histogram in
Figs. 6–8, the methods all provide reasonable estimation for a
majority of the validation points. There are relatively large errors in
only a few points, which may  be due to regional spatial correlation
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Fig. 4. Experimental and fitted theoretical variograms. (a-1), (b-1), (c-1) and (d-1) are respectively variograms of SM,  residual, LST and the cross between SM and LST on May
30,  2012. (a-2), (b-2), (c-2) and (d-2) are for June 15, 2012, and (a-3), (b-3), (c-3) and (d-3) are for June 24, 2012.

that cannot be fully represented by the under-sampled hard data
in this study. The error histograms also show that the error range
was reduced in each experimental period if the auxiliary data were
integrated, especially in the case of BME. Similar to the inherent
disadvantage of OK (Kravchenko, 2008), Co-OK, RK and BME  may
also overestimate in the range of low values and underestimate in
the range of high values, but this can be improved in RK and BME
even when the soil moisture and the covariate LST are moderately
correlated as in this study.

Validation by soil moisture observations from auto-weather
stations (AWS)

In addition to cross-validation, we  carried out absolute vali-
dation work for each method by using the soil moisture
observations of AWS, which were absolutely not used in the spa-
tial estimation. Because fewer than 10 AWSs are normally running,
only those stations can provide soil moisture observations for each
period are used. Here, we  treated the validation data in the three
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Fig. 5. Spatial distribution of soil moisture estimated by OK, Co-OK, RK and BME. The first column includes the estimation results of the four methods on May 30, 2012, the
second  column is for June 15, 2012 and the third column is for June 24, 2012. The white areas in each map  stand for the masked areas.
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Table  4
Parameters of variogram and cross-variogram models.

Date Variable Variogram model C0 C0 + C1 a (m) R2

May  30 Soil moisture Model (1) 0.1 (a) 52.29 (a) 1836 0.817
May  30 Residual Model (1) 1.1 (a) 30.59 (a) 1047 0.537
May  30 LST Model (1) 0.1 (b) 37.86 (b) 1638 0.988
May  30 Cross Model (2) −0.01 (c) −22.68 (c) 2139 0.845
June  15 Soil moisture Model (1) 3.3 (a) 18.35 (a) 1180 0.794
June  15 Residual Model (1) 0.6 (a) 12.34(a) 1692 0.672
June  15 LST Model (1) 0.01 (b) 4.393 (b) 1086 0.922
June  15 Cross Model (1) −0.01 (c) −5.575 (c) 1167 0.642
June  24 Soil moisture Model (1) 0.1 (a) 48.52 (a) 1452 0.763
June  24 Residual Model (1) 0.2 (a) 32.23(a) 945 0.491
June  24 LST Model (1) 0.14 (b) 8.876 (b) 1434 0.989
June  24 Cross Model (1) −0.01 (c) −9.33 (c) 1638 0.709

Note: a, stands for (m3/m3)2; b, stands for K2; c, stand for (m3/m3)*K.

Table 5
Summary statistics of cross-validation.

Date No. of WSN  Method Covariate CR RMSE (%) Bias (%)

May  30 47 OK N 0.54 6.28 −0.19
May  30 47 Co-OK Y 0.61 6.08 0.07
May  30 47 RK Y 0.62 6.02 0.04
May  30 47 BME  Y 0.76 5.01 −0.05
June  15 45 OK N 0.20 4.47 0.20
June15 45 Co-OK Y 0.21 4.37 0.11
June15 45 RK Y 0.45 3.97 0.15
June  15 45 BME  Y 0.62 3.42 −0.05
June  24 42 OK N 0.43 6.45 −0.12
June  24 42 Co-OK Y 0.45 6.38 −0.22
June  24 42 RK Y 0.55 6.04 −0.19
June  24 42 BME  Y 0.71 5.21 0.04

Note: Y, denotes using the covariate; N, not using the covariate; units for RMSE and Bias are m3/m3.

periods (29 points total) as one statistical data base. Fig. 9 shows the
scatters between the observed SM of AWS  and the SM estimated
by OK, Co-OK, RK and BME. The same statistical indicators used in
cross-validation were calculated and are listed in Table 6. Similar to
cross-validation, we found that Co-OK, even though it incorporated
the ASTER LST, did not exhibit evident improvement compared

with OK. The moderate correlation between the target variable
(SM) and the covariate (ASTER LST) in this study may have limited
the improvement of the accuracy because Co-OK does not use
physically interpretable relationships between the target variable
(SM) and auxiliary variable (LST), but rather assumes a linear rela-
tionship in the estimator. This finding is consistent with previous

Fig. 6. Cross-validation and error distribution for OK, Co-OK, RK and BME  on May  30, 2012. (a-1), (a-2) are for OK, (b-1), (b-2) are for Co-OK, (c-1), (c-2) are for RK, and (d-1),
(d-2)  are for BME.
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Fig. 7. Cross-validation and error distribution for OK, Co-OK, RK and BME  on June 15, 2012. (a-1), (a-2) are for OK, (b-1), (b-2) are for Co-OK, (c-1), (c-2) are for RK, and (d-1),
(d-2)  are for BME.

Fig. 8. Cross-validation and error distribution for OK, Co-OK, RK and BME  on June 24, 2012. (a-1), (a-2) are for OK, (b-1), (b-2) are for Co-OK, (c-1), (c-2), are for RK and (d-1),
(d-2)  are for BME.

Table 6
Summary statistics of validation by AWS.

Date No. of points Method Covariate CR RMSE (%) Bias (%)

May  30, June 15, June 24 29 OK N 0.27 5.61 −0.14
May  30, June 15, June 24 29 Co-OK Y 0.28 5.51 −0.15
May  30, June 15, June 24 29 RK Y 0.60 3.92 −0.07
May  30, June 15, June 24 29 BME  Y 0.68 3.86 −0.07

Note: Y, denotes using the covariate; N, not using the covariate; units for RMSE and Bias are m3/m3.



Author's personal copy

S. Gao et al. / International Journal of Applied Earth Observation and Geoinformation 32 (2014) 54–66 65

Fig. 9. The observed SM of AWSs versus estimated SM by OK, Co-OK, RK and BME. (a) is for OK, (b) is for Co-OK, (c) is for RK, and (d) is for BME.

conclusions that Co-OK can underweight the covariates and shows
only minimally superiority to OK when the auxiliary variables are
not highly correlated with the primary variable (Goovaerts, 1998;
Triantafilis et al., 2001; Wu et al., 2009; Emery, 2012).

Both RK and BME  show noticeable advantages over OK and Co-
OK in the absolute validation. The CR reached 0.60 for RK and
0.68 for BME. The RMSE of RK reduced to 0.0392 m3/m3 from
0.0551 m3/m3 of Co-OK, even more, the RMSE of BME can reduced
to 0.0386 m3/m3. Additionally, the CR of and RK and BME  are greater
than that of the linear regression shown in Table 3, which indicates
that RK and BME  can more fully incorporate the valuable informa-
tion from target variables and uncertain auxiliary variables, and
BME even performs better than RK.

Although the issue of overestimation in the range of low values
and underestimation in the range of high values still exists in BME,
RK and Co-OK, it can be improved compared to OK, especially in
BME  and OK as show in Fig. 9. We  can say that the auxiliary informa-
tion (LST) incorporated into the estimation by Co-OK, RK and BME
plays an important role here. We  also expect that integrating two or
more covariates and more highly correlated auxiliary data may  also
provide a solution for the issue, so the strength of the relationship
between the target variable and the auxiliary variable is important
for choosing the auxiliary data. Nevertheless, the problems (over-
estimation and underestimation) in absolute validation by AWSs
seem less important than those of the cross-validation according to
the scatter diagrams of absolute validation and cross-validation. It
is noted that partial error may  be introduced by the cross-validation
method itself in the under-sampled cases. For example, the extreme
values (max or min) of the observations may  be highly represen-
tative of the local area, if they are left out as the validation data,
the observations used in the estimator of the points (where the
extreme observations occurred) cannot fully reproduce or predict
the extreme values. This will lead to an extra component of error
and aggravate the issue of overestimation of high values and under-
estimation of low values. Thus, validation by use of extra data was
suggested in the spatial estimation.

Conclusions

The large spatial variation of the land surface soil moisture and
the commonly under-sampled soil moisture in situ (network) data
make the spatially accurate estimation of soil moisture an arduous
task. This study focused on the spatial estimation of soil moisture
by integrating auxiliary information from ASTER LST. The spatial
analysis method BME  was introduced here. For comparison, the OK
method, which uses only hard data, and Co-OK and RK methods,
which also incorporates auxiliary information, were also carried
out in the study. In BME, linear regression was first used to retrieve
soil moisture directly from the ASTER LST, and the t-distributed PI
was estimated and expressed as probability soft data. Based on this
study, we can indeed conclude that integrating the auxiliary data

(LST) in the spatial estimation of soil moisture can improve the esti-
mation accuracy. Co-OK did not show evident improvement over
the results of OK. In contrast, RK and BME  can more fully fuse the
valuable information from target variables and auxiliary variables,
even the BME  method can performs slightly better than RK. The
estimation accuracy and the inherent issue of spatial estimation
(overestimation in the range of low values and underestimation in
the range of high values) are both obviously improved in RK and
BME. Moreover, integrating highly correlated auxiliary data can
also be a potential solution of the inherent issue, so the strength
of the relationship between the target variable and the auxiliary
variable is important for choosing auxiliary data. It is also noted
that partial error may  be introduced by the cross-validation method
itself in under-sampled cases, so validation by an extra data was
suggested. In general, BME  has greater potential to successfully fuse
the uncertain auxiliary data in spatial estimation, and it can further
improve the estimation accuracy of soil moisture even in under-
sampled cases. Moreover, using an appropriate auxiliary variable
is important for obtaining successful spatial estimation results for
soil moisture.
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