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Abstract

Gridded climatic datasets with fine spatial resolution can potentially be used to depict the climatic characteristics across
the complex topography of China. In this study, we collected records of monthly temperature at 1153 stations and
precipitation at 1202 stations in China and neighboring countries to construct a monthly climate dataset in China with
a 0.025° resolution (~2.5 km). The dataset, named LZU0025, was designed by Lanzhou University and used a partial
thin plate smoothing method embedded in the ANUSPLIN software. The accuracy of LZU0025 was evaluated based on
three aspects: (1) Diagnostic statistics from the surface fitting model during 1951-2011. The results indicate a low mean
square root of generalized cross validation (RTGCV) for the monthly air temperature surface (1.06 °C) and monthly
precipitation surface (1.97 mm'?). The method used variable square root transformation for the spline surface fitting to
reduce positive skewness in the measured precipitation values and no variable transformation in air temperature case.
This indicates that the surface fitting models are accurate. (2) Error statistics of comparisons between interpolated
monthly LZU0025 with the withholding of climatic data from 265 stations during 1951-2011. The results show that
the predicted values closely tracked the real true values with values of mean absolute error (MAE) of 0.59 °C and
70.5 mm and standard deviation of the mean error (STD) of 1.27 °C and 122.6 mm. In addition, the monthly STDs
exhibited a consistent pattern of variation with RTGCV. (3) Comparison with other datasets. This was done in two ways.
The first was via comparison of standard deviation, mean, and time trend derived from all datasets to a reference dataset
released by the China Meteorological Administration (CMA), using Taylor diagrams. The second was to compare
LZU0025 with the station dataset in the Tibetan Plateau. Taylor diagrams show that the standard deviation derived
from LZU had a higher correlation with that produced by the CMA (R=0.76 for air temperature, and R=0.96 for
precipitation) compared to those from other datasets. The standard deviation for the index derived from LZU was more
close to that induced from CMA, and the centered normalized root-mean-square difference for this index derived from
LZU and CMA was lower. A similar superior performance of LZU was found in the comparison of mean and time trend
derived from LZU and those from other datasets. LZU0025 had high correlation with the Coordinated Energy and Water
Cycle Observation Project (CEOP)—Asian Monsoon Project (CAMP) Tibet surface meteorology station dataset for air
temperature, despite a non-significant correlation for precipitation at a few stations. Based on this comprehensive
analysis, we conclude that LZUOQ025 is a reliable dataset. LZU0025, which has a fine resolution, can be used to identify
a greater number of climate types, such as tundra and subpolar continental, along the Himalayan Mountain. We antic-
ipate that LZU0025 can be used for the monitoring of regional climate change and precision agriculture modulation
under global climate change.
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1 Introduction

Regional climatic conditions are a primary determinant of
agricultural productivity. Changes in temperature and precip-
itation will result in changes in land and water regimes that
may subsequently affect agricultural productivity (Anwar
et al. 2013). Over the past century, China has experienced
substantial climate change: during the past 100 years, the an-
nual average temperature has increased by 0.5-0.8 °C (Ding
et al. 2007) and the distribution of precipitation has become
more uneven (Piao et al. 2010; Liu et al. 2018). Agriculture in
China is as a major industry, supporting over 20% of the
world’s population with only 8% of global cultivated area,
and it is also a major importer of feed grains in the world
market (Chen et al. 2016). Therefore, it is important to under-
stand the impacts of climate change on agriculture in China,
both in terms of the welfare of the Chinese population and the
influence China has on world food markets. To address this
issue, agronomists usually use climatic observation data from
weather stations; however, the use of this type of data may
lead to site-dependent results and tends to ignore the hetero-
geneity in a specific geographical unit.

Climatic-gridded datasets, generated from the interpolation
of observations, express the distribution of climate over space,
and they are widely used in global and regional climate
change research. Air temperature and precipitation are the
most important basic elements in climatic research.
Commonly used global monthly climatic datasets, such as
those with 0.5° resolution produced by the Climatic
Research Unit (CRU) of the University of East Anglia in the
UK (Harris et al. 2014), and by the Climate Prediction Centre
(CPC) released by the National Oceanic and Atmospheric
Administration (NOAA) (Fan and Van den Dool 2008), have
been used to analyze the modern spatial climatic characteris-
tics of China (Wen et al. 2006; Zhou et al. 2010; Huang et al.
2015). However, in the case of these global datasets, climatic
observations in only ~200 sites were used for interpolation
across the complex terrain of China, and therefore significant
biases occur over much of the country (Zhang et al. 2009).

Monthly gridded air temperature and precipitation datasets
with 0.5° resolution for mainland China have been developed
and released by the China Meteorological Administration
(CMA) (http://cdc.nmic.cn/datasets.do?dsid=SURF_CLI
CHN_MUL MON). These datasets have been used to
analyze the response of vegetation phenology to temperature
and precipitation (Shen et al. 2015; Xiao et al. 2016) and to
assess the variability of climatic conditions for different types
of crop and crop yields (Zhao et al. 2014; Li et al. 2015; Song
et al. 2015; Liu et al. 2016; Zhang et al. 2016). Agroclimatic
research has also used this dataset to investigate the effects of
climate change on the cultivated area (Liu et al. 2015).
However, the coarse spatial resolution of the CMA dataset
makes it difficult to determine the relationship between
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climate change and agriculture on a regional scale, and in
addition, climate regimes in mountainous areas are not cap-
tured with sufficient precision. These problems may have sig-
nificant impact on local agricultural strategies and national
decision-making in terms of adapting to climate change. In
addition, the CMA only used observations in China, and the
quality of the datasets may be reduced for areas close to the
national border. Therefore, a set of climatic datasets with high
spatial and temporal resolution are needed for applications in
regional agroclimatic research, especially the climate impacts
on agriculture in mountainous areas. Monthly air temperature
and precipitation datasets with 0.025° resolution have been
constructed and improved for mainland China with the pro-
duction of our preliminary dataset (Wu et al. 2014); however,
the interpolated data are confined to China. Consequently, the
objectives of the present research are (1) optimization of
LZU0025 by extending the station data to neighboring coun-
tries and (2) assessment of the accuracy of LZU0025 using
three approaches: analysis of surface diagnostic statistics to
assess the spline interpolation model, analysis of errors by
comparing interpolated values to withheld station data, and
comparison of LZU0025 with existing datasets.

2 Data and methods
2.1 Data

We used the monthly air temperature and precipitation dataset
from the “China ground monthly climate dataset”, based on
753 national meteorological stations (Fig. 1). Its quality and
uniformity are evaluated by the National Meteorological
Information Center (Feng et al. 2004; Li et al. 2004).
Besides the observations in China, the monthly air tempera-
ture data on 405 stations and monthly precipitation data on
449 stations from the neighboring countries (such as India,
Mongolia, etc.), obtained from the Global Historical Climate
Network (GHCN-Monthly Version 3), were also used in this
study (Fig. 1). The quality of the extended station data, such as
the presence of duplicate or overflow data (where the value
exceeds the mean plus 5 standard deviations) in consecutive
months, was checked automatically and inhomogeneous data
were removed by using the Pairwise Homogeneity Algorithm
(PHA) software (Menne and Williams 2009). The internal
consistency such as air temperature in the cooler periods is
lower than that in warm periods was also checked (Feng et al.
2004). However, the elevation data at some sites were miss-
ing. As the elevation is of great importance for the accuracy of
data interpolation, the missing elevation data for some GHCN
stations were derived from the global 90 m digital elevation
data. In addition, digital elevation data covering China and its
neighboring areas was required. Owing to the spatial coverage
and temporal continuity of Chinese meteorological station
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Fig. 1 Distribution of air temperature and precipitation stations. The blue
circle dots represent for precipitation stations, red dots for the air
temperature stations, and yellow dots for the stations where both
precipitation and air temperature were measured. The green triangles

data and the recent updated GHCN-Monthly datasets occur-
ring in 2011 (https://www.ncdc.noaa.gov/ghcnm/v3.php), we
focused on dataset optimization from Jan 1951 to Dec 2011.
To assess the accuracy of the new updated LZU0025, several
published and widely used monthly air temperature and precip-
itation products were used for comparisons (Table 1). Station-
based interpolation products involved CPC, CRU, CMA, and the
University of Delaware Air Temperature and Precipitation prod-
uct (hereafter UD). These datasets contain both air temperature
and precipitation elements. Since atmospheric reanalysis data are
commonly used in studies of climate change, energy balance,
and the hydrological cycle, surface monthly air temperature prod-
uct from the National Centers for Environmental Prediction
(hereafter NCEP) and the ERA-Interim 2-m temperature product
from the European Centre for Medium-Range Weather Forecasts
(hereafter ECMWF) were also collected. For precipitation ele-
ment, Global Precipitation Climatology Centre (GPCC) monthly
product and Asian Precipitation-Highly-Resolved Observational
Data Integration Towards Evaluation monthly dataset (APHRO)
derived from the APHRO MAV1101R2 daily dataset were used.
In addition, CMA was taken as a benchmark for comparisons
since its interpolation is based on 2472 ground meteorological
stations, including unpublished local stations in China

@ T station
e P station
O PandT station
A Withheld station
@ CAMP Tibet
Elevation (m)

- 8721

.0

represent the withheld stations and the red dot refers to the Coordinated
Energy and Water Cycle Observation Project (CEOP)-Asian Monsoon
Project, CAMP Tibet surface meteorology stations. The background is
the digital elevation map describing the elevation in this area

(SURF_CLI CHN TEM MON GRID 0.5). Besides, the fine
scale, the goal of the Coordinated Energy and Water Cycle
Observation Project (CEOP)-Asian Monsoon Project, CAMP
Tibet surface meteorology station dataset (hereafter CAMP
Tibet, in Fig. 1) (Ishikawa 2011) in available period of 2003—
2004 (https://data.eol.ucar.edu/dataset/list/) was also used.

2.2 Method

Thin plate spline interpolation is well-suited for the inter-
polation of monthly air temperature and precipitation
datasets (Hutchinson et al. 2009). This method provides
accurate estimates of climate by allowing for the spatially
varying dependence on topography, and it is able to pro-
vide a direct estimation of interpolation error, as well as
efficient diagnosis of data errors (Hutchinson and Gessler
1994). The underlying statistical model is as follows
(Wahba and Wendelberger 1980; Wahba 1983; Wahba
1986; Wahba 1990; Hutchinson 1993; Hutchinson and
Xu 2004; Hutchinson and Xu 2013)

G =f(x)+b'y +eli=1,..N) (1)
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Table 1 Summary of air temperature and precipitation datasets

Dataset Sources Variable  Spatial resolution ~ Time span ~ Reference

CPC The Climate Prediction Center, National Centers T/P 0.5*%0.5° 1948-2015  Fan and Van den Dool (2008)
for Environmental Prediction

UuD Center for Climatic Research Department of Geography, T/P 0.5%*0.5° 1901-2008  Matsuura and Willmott (2009)
University of Delaware Newark, USA

CRU University of East Anglia Climatic Research Unit, UK T/P 0.5*0.5° 1901-2009  Harris et al. (2014)

LzU University of Lanzhou, China T/P 0.5%0.5° 19612011

CMA China Meteorological Administration, China T/P 0.5*0.5° 1961-2015  Xu et al. (2009)

NCEP NOAA National Center for Environmental Prediction T 2.5%2.5° 1948-2015  Kalnay et al. (1996)

ECMWEF  The European Centre for Medium-Range Weather T 0.5%0.5° 19792015 Dee et al. (2011)
Forecasts, Europe

APHRO  APHRODITE’s Water Resources, Japan P 0.5%0.5° 1951-2007  Yatagai et al. (2012)

GPCC Deutscher Wetterdienst, Germany P 0.5*%0.5° 1901-2010  Schneider et al. (2011)

T is the abbreviation of air temperature and P is that of precipitation

where z; is the dependent variable (i.e., air temperature
and precipitation) at location i. x; is a d-dimensional vec-
tor of spline independent variables, where d is the number
of spline variables. f(x;) is an unknown smooth function
of x;. The method of only using smooth function to do the
interpolation is called the thin spline smoothing splines
(Wahba and Wendelberger 1980). In the precipitation in-
terpolation case, besides taking latitude and longitude as
x;, the elevation was recommended being incorporated as
the third independent variable to consider orographic ef-
fect on precipitation distribution, and this would make a
big contribution to surface interpolation accuracy
(Hutchinson 1995). To allow for additional dependencies
that have physical influences on climate variable, a linear
parametric sub-model of b”y; is added to smooth function,
and this semi-parametric model is called as partial thin
plate splines (Wahba 1990). In which y; is a p-dimension-
al vector of independent linear covariate (i.e., dependen-
cy), where p is the number of covariates, and b7 is an
unknown p-dimensional vector of coefficients of y;.
Since temperature decline approximately linearly with el-
evation (Houghton 2002), in the temperature interpolation
case, elevation above the sea-level was used in the inter-
polation as an independent covariate y; and y; became
one-dimension. The coefficient of an elevation covariate
could be assumed as an empirically determined tempera-
ture lapse rate (Hutchinson 1991). The interpolated sur-
face would reflect the temperature variation in vertical
visually high mountainous region, with the obvious ele-
vation changing character (Zhang et al. 2011). Each ¢; is
an independent and zero mean error term with the
variance w;o”, where w; is termed of the relative error
variance and was set uniformly weighted for each surface
and o° is the error variance (unknown) that is constant
across all data points (Hutchinson 1991). N is the number
of data point, with N=1158 in temperature case and N=
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1202 in precipitation case. The function f and coefficient
vector b are determined by minimizing

+ pIn(f) (2)

i=1

v [Zf(x)bTy]?

[ Wi }
where J,,(f) is a measure of the complexity of f, the
“roughness penalty” defined in terms of an integral of
mth order partial derivatives of /. The estimate of f having
an expansion in terms of scalar function of distance from
each data position and the form of the scalar function
depend on the dimension of the x; and the m (Wahba
1990). w; is the relative variance and was set as the uni-
form for each surface. p is a positive number called the
smoothing parameter, determining a trade-off between da-
ta infidelity and surface roughness (Hutchinson 1991;
Hutchinson 1993). As p approaches zero, the fitted func-
tion approaches an exact interpolant. As p approaches
infinity, the function f approaches a least squares polyno-
mial, with order depending on the order m of the rough-
ness penalty. The value of the smoothing parameter p is
normally determined by minimizing a measure of predic-
tive error of the fitted surface given by the generalized
cross validation (GCV) (Hutchinson and Gessler 1994).
When more stations are distributed evenly used in Eqgs.
(1) and (2), more detailed surface fitting could be obtain-
ed in terms of GCV criteria. Figure 1 shows that 1158 air
temperature stations and 1202 precipitation stations cov-
ering the area of China and its neighboring countries were
used to fit the climatic surface. The knots chosen from the
data points with number of 1/4 to 1/3 of the size of the
dataset were chosen to be used to limit the complexity
Ja(f) of the fitted surface. With more stations data used
for surface fitting, more knots were selected and the fitted
surface could be more close to real complex terrain in
China. In this paper, due to meteorological data privacy
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policy, only above limited numbers of available stations
data were used for interpolation for such a large area.

The vector Z of fitted function values can be written as
(Hutchinson and Xu 2004)

Z=Az 3)

where 7 is a vector of all grid points (N) values of air temper-
ature or precipitation, and z is corresponding observed value. z
and z is connected through A, an N x N matrix called the
influence matrix (Hutchinson and Xu 2004). The number of
degrees of freedom of the fitted spline is defined as SIGNAL
(= trace (A), unit: dimensionless), and the number of degrees
of freedom of the weighted residual sum of squares is given as
ERROR (= N—trace (A)).

The weighted mean residual sum of squares (MSRs) is
given by (Hutchinson and Xu 2004)

MSR = [|[W ! (I-A)z||*/N (4)

where || || means to square the norm of residuals, and 7 is the
identity matrix. A, z and N share the same meanings with Eq.
3. Wis the diagonal matrix given by

W = diag(w1, .....w,) (5)

The GCV is calculated for each value of the smoothing
parameter p by implicitly removing each data point and cal-
culating the residual from the omitted data point of a surface
fitted to all other data points using the same value of p. The
GCV is then a suitably weighted sum of the squares of these
residuals (Craven and Wahba 1978; Wahba 1990). The GCV
is calculated by the formula (Hutchinson and Xu 2004)

||W"(I—A)z||2/
GCV=— N (6)
|:tmce(1*A)/N]2

When the surface fitting procedure fails to obtain the
smoothing parameter, an asterisk in the output log file flags
the SIGNAL (Hutchinson and Xu 2004). Hutchinson (1993)
and Hutchinson and Gessler (1994) recommend that the
SIGNAL should not exceed about half the number of data
points. SIGNAL larger than this can indicate insufficient data
or positive correlation in data errors. The GCV and MSR are
read from the output log file together with their square roots
RTGCV and RTMSR. A reliable model is suggested by hav-
ing SIGNAL not exceeding half the number of data points and
having low RTGCV and RTMSR.

The value z; of a spline surface at an arbitrary position i can
be written as (Hutchinson and Xu 2004)

Z=alc (7)

l

where a; is a vector depending on i. ¢ is the vector of
surface coefficient. The standard error estimate of the sur-
face value z; (also called the model standard error) is cal-
culated using the formula

(a]va;) 1/2 (8)

where v is the error covariance of surface coefficient c.
With considering the error in estimating the model given
by Eq. (1), the predicted standard error (SE) is calculated
using the formula

SE = (a/va; + 02)1/2

(9)
where o? is the variance of the data error e; in Eq. (1) and
the data error variance (VAR) can be estimated by

. 2
VAR = M (10)
trace(I-A)

The flow chart for generating a climatic dataset is illustrat-
ed in Fig. 2. Taking preprocessed station dataset and DEM
data as the input, considering the amount of dataset <2000
(Hutchinson and Xu 2004), the SPLNEA was employed to
calculate the surface coefficient and its error covariance. The
surface diagnostic files for the GCV calculation and large
residual file for data error check were also output as with the
log file recording a set of indices on evaluating whether per-
fect surface fitting was reached. It is noted that in precipitation
case, to reduce the skew in the raw data, the square roots of the
monthly rainfalls was interpolated and then the interpolated
values were squared. The units of corresponding surface sta-
tistic diagnostic such as the square roots—RTGCV, RTMSR,
and RTVAR—for precipitation interpolation should the
square root mm (mm'”?) (Hutchinson 1998a).

When surface fitting parameters in Eqs. (1) and (2) were
estimated by using the SPLNEA module, with the implementa-
tion of digital elevation model (DEM) providing latitude, longi-
tude, and elevation information in a grid cell, the fitted climatic
values and corresponding predicted standard error (see Eq. (9))
in the grid were calculated by using the LAPGRD module.
Therein, the back-transformation of precipitation fitted surfaces
was implemented. As the surface complexity f was estimated
relating to distance from each data position (see Eq. (2)), the
closest interpolated stations had the distance of approximately
6 km and this value could be taken as the minimum spatial
resolution in theory (Hutchinson 1998b). While NASA’s Jet
Propulsion Laboratory (JPL) provides global DEM with approx-
imate 90 m resolution (https://cgiarcsi.community/data/srtm-
90m-digital-elevation-database-v4-1/). This explicit geographic
information might be used for getting the fitted surface in the
sub-grid that could match the spatial resolution of commonly
used land state datasets such as the Moderate Resolution
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Fig.2 Flow chart for constructing
the LZU0025 gridded monthly air
temperature and precipitation
datasets

Monthly meteorological station dataset

(China and its neighboring areas)

Quality control: station elevation check and filling

A

SRTM 90 m digital elevation data

| |

Reformat using Fortran

Reformat based on Arcgis
(0.025° * 0.025°)

{ J
Y

ANUSPLIN software
v
SPLINEA

A 4 & A

Error covariance file

Surface diagnostic file:

Surface coefficient file SIGNAL, GCV, MSR

Imaging Spectroradiometer (MODIS) Leaf Area Index 1 km
dataset (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/products/lai-and-fpar/MYD15A2/) and satellite
soil moisture 3 km dataset (https://nsidc.org/data/smap/smap-
data.html). Considering computational efficiency, as a tradeof,
monthly air temperature and precipitation dataset and their
corresponding error dataset with a 0.025° resolution (~2.5 km)
were generated.

Besides using surface diagnostic (e.g., RTGCV) to assess
the accuracy of interpolation model, residuals from stations
withheld from the interpolation were examined. Considering
approximate 1/3 of the size of dataset as withheld data, 700 air
temperature and precipitation stations were selected by using
SELNOT program in the ANUSPLIN package. This program
removed points from the closest pairs in the dataset and led to
three-dimensional space scaled to have unit variance. Given
the site maintenance in the entire time period, 435 air temper-
ature stations and 373 precipitation stations were kept and
with 265 stations (shown in Fig. 1) sharing. These 265 stations
were used as the withheld to assess the accuracy of interpola-
tion. The mean error (ME), mean absolute error (MAE), and
standard deviation of mean error (STD) were calculated by
using the ANUSPLIN-interpolated values against the with-
held station data.

To further evaluate the accuracy of the climatic datasets,
comparisons were made with global climatic datasets (Yatagai
et al. 2012; Pai et al. 2014; Schneider et al. 2014; Yu et al.
2015). Statistical indicators of correlation and bias and the
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LAPGRD

!

Surface and standard error grid file
with 0.025° resolution

spatial distribution of climatic parameters are usually calculat-
ed and compared to assess the datasets (Conti et al. 2014; Wu
et al. 2014; Ciabatta et al. 2015; Hessels 2015; Yu et al. 2015).
It should be noted that comparisons are mainly based on mean
states, while comparatively few are based on deviations from
the average. In order to thoroughly evaluate the new
LZU0025 datasets, we used statistical indices—the mean
reflecting average climate status, the standard deviation from
the mean that can depict anomaly, and the time frend describ-
ing changes of precipitation and air temperature with time (Eq.
(11))—as the bases for comparison.

1
mean; = ?Z?rf

ey o

time trend; = (regression coefficient),

standard deviation; =

where 7% is the value of climatic element at a grid / with month-
ly time index ¢ (1,2,3,....,7), and T is the total amount of
months in the whole time period. 7; is the mean value during
the whole time period at the grid i. The time trend; equals to the
linear regression coefficient derived from regressing all values
in time series at the grid 7. The RegCoef command in NCAR
Common Language was used to calculate linear regression
coefficient, and 95% confidence limits were constructed for
the regression coefficient (https://www.ncl.ucar.edu/
Document/Functions/Built-in/regCoef-1.shtml).
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The Taylor diagram (Taylor 2001; Taylor 2005) is an effec-
tive way of graphically illustrating how closely a set of pat-
terns match observation in a single graph and has been used to
assess the performance of atmospheric model simulations
(Brown et al. 2011; IPCC 2013; Kim et al. 2013; Ma et al.
2014). However, Taylor diagrams have not been used to eval-
uate the accuracy of gridded datasets. In this paper, we con-
structed Taylor diagrams for the mean, the standard deviation
from mean, and the time trend derived from all datasets to
evaluate the accuracy of the new LZU0025 dataset.

In the Taylor diagram, the difference between targeted
dataset and the reference is characterized in terms of their
Pearson correlation (R), their centered normalized root-
mean-square difference (RMSE), and the ratio of their stan-
dard deviations STD,;;, ((Eq. (12), below). STD is taken as
the radius in the graph. R is represented by cosine of the angle
of a polar plot, and the distance to the reference point is the
RMSE. With being close to the reference point in Taylor dia-
gram, targeted dataset is demonstrated becoming similar to the
reference from the perspective of used index (e.g., mean). The
targeted dataset located at the x-axis with R = 1 and STD, ., =
1 has a perfect similarity with the reference. When targeted
dataset is positioned close to the reference in all Taylor dia-
grams constructed from mean, standard deviation, and time
trend, this dataset is concluded reliable. The formulas used for
figuring Taylor diagram are as follows:

5 £ (o) (mm)

STD, *STD,,

Vo 3 [en)-(nem) |
STD,,
STD, = %é (n,——ﬁ)z STD,, = ,/%z;‘:l (mi—ﬁ>2

STD,
STD,,

R =

STDratio -

(12)

where m; refers to the index (i.e., standard deviation, mean,
and time trend, see Eq. (11)) at grid of i derived from the
reference CMA, and »; represents the index at grid of 7 derived
from other datasets. 7 and 7 are the mean values in space, and
s is the total number of grids in the whole China area. Here, the
normalized Taylor diagrams were used with the reference (ab-
breviated as REF in the figure) plotted on the x-axis at unit
distance from the origin. The normalized REF has R=1,
STD,uiio=1 and RMSE =0.

To make comparisons at the same spatial scale, the resolu-
tion of LZU0025 was up-scaled to 0.5° using the nearest
neighbor method. The value of a grid from LZU0025 that
was closest to the grid from CAM with the resolution of
0.5° was used to assign a value to this grid. The resampled

dataset was named LZU. Other products were resampled
using bilinear interpolation to enable comparison with
CMA. Besides, mean climate values in time series derived
from all dataset were figured for comparisons, and the spatial
distributions of climatological annual mean air temperature
and precipitation derived from datasets were also illustrated
for assessing the accuracy of LZU0025. Last but not the least,
the CAMP Tibet meteorology station dataset was used to eval-
uate the accuracy of LZU0025 on mountainous remote area.
The Pearson correlation was calculated to measure how highly
correlated are LZU0025 and CAMP Tibet after going through
significant test. Higher correlation greater than 0.7 (considered
as strong correlation in statistics) indicates that the interpolat-
ed LZU0025 could provide climatic values close to measured
values. The mean bias was also calculated for comparisons.

3 Results and discussion

3.1 Model performance in ANUSPLIN

Diagnostic statistics for air temperature and precipitation sur-
face fitting during 1951-2011 period were extracted from log
files after running SPLINEA module (see Fig. 2). Table 2
shows that the mean smoothing parameter p almost reached
zero, indicating an exact interpolant occurring. The mean
values for SIGNAL do not exceed half the number of data
points, demonstrating a successful surface model constructed.
The mean SIGNAL values also exhibit a smooth transition
from 1 month to another, with the highest value in winter
and the smallest in summer. The interpolation error RTGCV
for the monthly air temperature surface averaged of 1.06 °C,
and it also exhibited monthly change with smallest error pre-
dominantly occurring in summer and the greatest in winter.
The RTGCV for the monthly precipitation surface averaged of
1.97 mm'”? but was with the greatest error occurring in sum-
mer and the smallest in winter. Additionally, the square roots
of the weighted mean residual sum of squares (RTMSR) and
the data error variance (RTVAR) (see Egs. (4) and (10) in Sect.
2.2) are low in both cases, indicating the accurate interpolation
model and low estimated data error (RTVAR <2.62 mm'?).
The spatial pattern of the mean predicted standard error (SE,
see Eq. (9)) of monthly air temperature from 1951 to 2011 in
Fig. 3a shows low errors ranging of 0.7—1.1 °C from thin plate
spline interpolation. The data error of monthly temperature
from meteorological stations had a small magnitude of varia-
tion (see RTVAR in Table 2). The model error was dominated
(see RTGCYV in Table 2), and the GCV calculation (see Sect.
2.2) would make GCV higher at station than in surroundings.
Therefore, a local error pattern that the interpolated station had
a higher SE than surroundings existed in temperature interpo-
lation case (Fig. 3a).
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Table 2
during 1951-2011 period

Summary statistics for monthly air temperature and precipitation spline surface fitting by means of the method of thin plate spline interpolation

Month Temperature case Precipitation case
p SIGNAL RTGCV(°C) RTMSR(°C) RTVAR(CC) p SIGNAL RTGCV(mm"?) RTMSR(mm'?) RTVAR(mm'?)

Jan 0.01 686 1.43 0.37 0.66 0.03 388 125 0.82 0.99
Feb 0.01 669 1.28 0.35 0.62 0.03 374 1.27 0.83 1.01
Mar 0.02 588 1.08 0.36 0.61 0.03 387 1.48 0.95 1.16
Apr 0.05 493 0.99 0.43 0.65 0.03 339 1.78 121 1.46
May 0.05 502 0.95 0.40 0.62 0.04 318 2.13 148 1.77
Jun 0.04 526 0.95 0.39 0.60 0.04 304 2.68 1.90 2.26
Jul 0.04 514 0.91 0.38 0.58 0.04 297 3.10 222 2.62
Aug 0.06 481 0.88 0.40 0.59 0.05 268 3.01 224 2.60
Sep 0.12 392 0.89 0.49 0.65 0.06 274 2.50 1.85 2.14
Oct 0.11 415 0.93 0.52 0.67 0.04 329 1.95 134 1.60
Nov 0.05 516 1.10 0.47 0.69 0.02 433 137 0.81 1.04
Dec 0.02 639 133 0.39 0.69 0.02 436 1.17 0.71 0.89
Average 0.05 535 1.06 0.41 0.64 0.04 346 1.97 136 1.63

The mean error (ME), mean absolute error (MAE), and
standard deviation of mean error (STD) based on comparisons
between LZU0025 and withheld data during 1951-2011 pe-
riod were summarized by monthly scale in Table 3. The values
were consistent with surface diagnostics in Table 2. Predicted
values of monthly air temperature closely tracked the real true
values. Mean absolute errors (MAEs) varied in the range of
0.48-0.65 °C, with an overall average of 0.59 °C. This indi-
cated that LZU0025 provided higher monthly air temperature
compared to measurements. Standard deviation of errors
(STDs) were 1.27 °C in average, in close agreement with
mean value of RTGCV values (1.06 °C in Table 2). MAE
and STD had a slight monthly variation with errors smaller
in winter and greater in summer, which were opposite with
RTGCV monthly changing, while they were confined to
1.40 °C.

ME for monthly precipitation errors in Table 3 averaged
around 19.1 mm, MAE averaged around 70.5 mm, and STD
of 122.6 mm. The root square of average STD was signifi-
cantly larger than the RTGCV of 1.97 mm"? in Table 2. The
high spatial complexity of daily precipitation might lead to
errors in the monthly precipitation surfaces, although these
are somewhat ameliorated when they are summed to monthly
totals. On the other hand, RTGCV was derived based on the
main data network that was dominated by low-elevation sta-
tions, while STD was calculated using the withheld data that
were sampled with higher elevation gradient. Comparing with
temperature, the monthly precipitation withheld errors
showed the same seasonal variation exhibited by the
RTGCYV values (Table 2), with errors greatest in summer
and autumn and smallest in winter. Furthermore, there was a
great variation of the data error (see RTVAR in Table 2) as
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well as of the model error (see RTGCV in Table 2), and these
two types of errors varied consistently. This would lead to total
error (i.e., SE) superposition, and its variation had a same
pattern with data error. The spatial pattern of mean SE of
monthly precipitation from 1951 to 2011 is displayed in Fig.
3b, which shows the error corresponded to precipitation itself,
with error in the northwest less than in the southeast. Due to
data error variance of monthly precipitation could exceed
100 mm over the southeast of China in summer season, the
SE in Fig. 3b provided values greater than 100 mm. Moreover,
the predicted error of precipitation on the mountainous region
(e.g., Tianshan and Qilian) showed similar pattern with eleva-
tion changing (see Fig. 1), namely greater values on high-
altitude area and low errors on neighboring flat regions. This
indicated the usability of LZUO0025 monthly precipitation
dataset, although the Tibetan Plateau region had higher errors
in both interpolation cases due to less available meteorological
stations (see Fig. 3). While it is noted that the spatial distribu-
tion of SE differed between in air temperature and precipita-
tion interpolations (see Fig. 3), and this phenomenon was
firstly reported. In summary, the statistics based on surface
fitting modeling and comparisons between interpolated
LZU0025 with withheld station data demonstrated the accu-
racy of LZU0025.

3.2 Comparisons with other datasets

Comparisons of the monthly air temperature datasets were
made during 1979-2008 period, since the ECMWF dataset
initially updated in 1979 and the UD dataset was updated until
2008. Figure 4 illustrates a Taylor diagram comparing the
mean state, standard deviation from mean state, and time
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contains the model error of spline surface fitting and the estimated data
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Table 3  Error statistics of interpolated monthly air temperature and
precipitation LZU0025 datasets compared to withheld station data
during 1951-2011 period

Month Temperature (°C) Precipitation (mm)

MAE ME STD MAE ME STD
Jan 0.48 0.10 1.04 22.7 7.5 479
Feb 0.53 0.11 1.16 27.7 7.1 46.8
Mar 0.59 0.13 1.31 43.5 12.0 73.0
Apr 0.64 0.13 1.35 61.8 25.1 101.0
May 0.62 0.13 1.38 96.3 24.4 151.4
Jun 0.62 0.11 1.40 1309 33.1 248.3
Jul 0.62 0.10 1.37 131.0 44.7 217.5
Aug 0.63 0.09 1.35 118.7 31.3 191.4
Sep 0.65 0.10 1.32 94.8 232 162.5
Oct 0.63 0.11 1.28 63.8 5.9 1334
Nov 0.57 0.11 1.17 325 6.4 58.3
Dec 0.53 0.10 1.07 219 8.5 39.4
Average 0.59 0.11 1.27 70.5 19.1 122.6

trend indices (see Eq. (11)) derived from various air tempera-
ture datasets. For the standard deviation index, Fig. 4a reveals
that the correlations of UD and LZU with CMA respectively
are the highest (R>0.75), followed by CRU and ECMWF
(R=0.7-0.75), while for NECP and CPC, it is relatively low
(R=0.6-0.7). The standard deviation (STD) of this index of
standard deviation indicates that UD is the closest to CMA
(STDy, 40 = 1.1), while CRU, ECMWE, and LZU are closer to
CMA (STD, 4, = 0.8, 0.9, and 1.25) compared with CPC and
NCEP. The RMSE of the standard deviation index (dotted
semi-circle) shows that the value for UD with CMA is less
than 0.75; CRU, ECMWF, and LZU are close to 0.75; and
CPC and NCEP are greater than 0.75. The standard deviation
index indicates that UD is more similar to CMA, followed by

(a) standard deviation
150 L 1.50
125 125
3
N 1.00 1.00
©
£
2 0.75 0.75
a
5 0.50 0.50
0.25 0.25
0.00 0.00

Fig.5 Spatial distribution of climatological annual mean (1979-2008) air P>
temperature-derived datasets (unit: °C). The graph on the lower right
(CMA-LZU) is the difference between annual mean CMA and LZU

LZU, CRU, and ECMWEF, and there is a large difference be-
tween CMA with CPC and NCEP. For the mean index (Fig.
4b), the correlations of LZU and the other datasets with CMA
are very high (R=0.95), and all of the STDs are consistent
with that from CMA; however, the RMSEs are less similar but
with low values less than 0.5. Thus, from the perspective of
the mean index, LZU is consistent with other existing datasets.
For the time trend index (Fig. 4c), the correlations of all of the
datasets with CMA are low (R =0.4-0.7). LZU and UD have
the highest correlation coefficient with CMA (R > 0.6),
followed by CRU and CPC; and ECMWF and NCEP have
the lowest. The STDs of CRU, ECMWF, and NCEP are closer
to CMA (STD,q40 = 1.25), followed by LZU and UD; CPC
exhibits the greatest discrepancy with CMA. The RMSEs of
all of the datasets, except for CPC, are close to that of CMA. In
terms of the time trend index, with the exception of CPC, all of
the datasets are similar to CMA. In summary, the CRU, UD,
LZU, and ECMWF datasets are more similar to CMA, and
CPC and NCEP exhibit the greatest differences to CMA.
Next, we evaluate spatial distributions of climatological
annual mean air temperature derived from all of the datasets
(Fig. 5). LZU and CMA exhibit a consistent pattern with
highlighting mountainous regions such as the Tianshan and
Qilian Mountains. LZU, in the northern part of China, exhibits
a higher temperature compared to CMA (CMA—-LZU in the
bottom of Fig. 5). This might be caused by extended stations
in Mongolia involved in the interpolation; however, the dif-
ferences are concentrated within the relatively narrow range of
+ 1 °C. In addition, it is noticeable that the temperature pat-
terns derived from site-based interpolation are much more
similar than those from atmospheric model-based simulation

(C) Time trend

025

0.00 L

0.25 0.50 0.75 REF 1.25 1.5

Fig. 4 Taylor diagram illustrating comparisons of monthly air
temperature datasets. a The standard deviation index. b The mean
index. ¢ The time trend index (see Eq. (11) in Sect. 2.2). In each sub
figure, the X-Y coordinates both represent the standard deviation derived
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from each index. The more close the symbol approaches to the referenced
dataset CMA (REF has R =1, STD, ,;;, = 1 and RMSE =0, see Eq. (12) in
Sect. 2.2) in graph, from the perspective of this index, the more similar the
dataset represented by this symbol to the REF, and vice versa
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Fig. 6 Time series of annual mean air temperature (°C) (a) and precipitation (mm) (b) for all datasets in China

results. Compared with NCEP modeling data, the ECMWF
are closer to the station data especially in the northwestern and
Tibetan regions.

Comparisons of time series of monthly air temperature
dataset are shown in Fig. 6a. The variations in the absolute
value of annual air temperature are obvious for all of the
datasets. The mean values for UD, CRU, and ECMWF are
relatively high (6.9 °C, 7.0 °C, and 6.8 °C respectively), while
those for LZU, CPC, and CMA are intermediate (6.5 °C,
6.5 °C, and 6.2 °C respectively), and that for NCEP is rela-
tively low (5.6 °C). The linear regression coefficients (calcu-
lated by using the RegCoef command) for air temperature in
time series from all datasets had positive values, indicating
that all of the records provided an overall warming trend with
the significant confidence of 95%. CPC provided the highest
warming rate of 0.31 °C/10 year, followed by CMA with rate

(a) standard deviation

1.50
1.25
1.00

0.75

STD(Normalized)

0.50

0.25

0.00

0f 0.27 °C/10 year, LZU, CRU, and ECMWF with the same
warming rate of 0.23 °C/10 year, and UD with rate of 0.20 °C/
10 year and NECP with rate of 0.15 °C/10 year. However, the
changing trends of annual mean temperature derived from
various datasets are consistent with each other. The annual
temperatures all increased and showed a small peak in 1982.
Then, they all decreased and were at minimum in 1984. After
that, they all increased rapidly with small fluctuations and
peaked at high values in 1998. These peaks maintained with
small fluctuations until 2006 and started to decline in 2007.
Comparisons of monthly precipitation were made during
1961-2007 period, since the total number of national meteo-
rological stations in China stabilized in 1960 and the APHRO
dataset was updated until 2007. Figure 7 illustrates a Taylor
diagram of standard deviation, mean, and time trend indices
(see Eq. (11)) derived from the various precipitation datasets.

(c) Time trend
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Fig. 7 Taylor diagram comparing the various precipitation datasets. a
The standard deviation index. b The mean index. c¢The time trend
index (see Eq. (11) in Sect. 2.2). In each sub figure, the X-Y coordinates
both represent the standard deviation derived from each index. The more
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close the symbol approaches to referenced dataset CMA (REF withR =1,
STD, ;o =1 and RMSE =0, see Eq. (12) in Sect. 2.2) in graph, from the
perspective of this index, the more similar the dataset represented by this
symbol to the REF, and vice versa
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Table 4 Comparison of

LZU0025 with the CAMP Tibet Station Latitude Longitude Air temperature Precipitation

meteorology station dataset

during the 2003-2004 period Bias (°C) Correlation Bias (mm) Correlation
Gaize 32.30 84.05 0.6 0.998* 0.8 0.987%
MS3608 31.23 91.78 0.7 0.999* 7.1 0.423
ANNI 31.25 92.17 —0.4 0.998* —29.6 0.828*
D66 35.52 93.78 -1.0 0.998* -1.6 0.873*
BJ-Tower 3137 91.90 0.5 0.998* —28.4 0.892*
D105 33.06 91.94 —0.6 0.999* —-13.7 0.896*
MS3478 31.93 91.71 0.7 0.999* -16.6 0.895*
Amedo 32.24 91.62 —0.6 0.994* -17.1 0.733

Without asterisk, the correlation relationship was non-significant

*Passing the statistical significant test at a level of 0.01

For the standard deviation index (Fig. 7a), the correlations
between all of the datasets and CMA are high (R > 0.9), and
LZU with CMA has the highest R 0f0.97. The STDs for LZU,
APHRO, and CRU are significantly closer to STD of CMA
than those of UD, GPCC, and CPC, and the RMSEs of all of
the datasets are close to that of CMA especially for LZU
(RMSE < 0.5). With regard to the standard deviation index,
LZU, CPC, GPCC, and UD are more similar to CMA than are
CRU and APHRO. For the mean index (Fig. 7b), the correla-
tions of LZU and APHRO with CMA are the highest (R >
0.94), while the STD for LZU is closer to that of CMA than
that of APHRO, and the RMSE of LZU with CMA is the
lowest (RMSE =0.2). With regard to the time trend index
(Fig. 7c), the correlation of LZU with CMA is the highest
(R=0.75), and the correlations of the other datasets with
CMA are centralized with only minor differences (R =0.3—
0.5). The STD for LZU is closest to that of UD and GPCC,
followed by CPC and CRU, and LZU and APHROS take the
last place. LZU has the smallest RMSE (=0.74) with CMA,
and other datasets have similar great RMSE (> 0.75). In sum-
mary, LZU, APHRO, CPC, CRU, and GPCC are closer to
CMA, and UD biased obviously.

Spatial distributions of climatological annual mean precip-
itation derived from all of the datasets are illustrated in Fig. 8.
All datasets show the similar decreasing of annual precipita-
tion from southeastern to northwestern (<200 mm). With
more stations in the mountainous area interpolated for CMA
and LZU, CMA and LZU provide high annual mean precip-
itation amount (> 200 mm) in Tianshan and Qilian Mountains
in northwest part of China. Compared with CMA, the precip-
itation derived from LZU in the foothills of the Himalayan
Mountain exceeds 2000 mm, as is also the case for CRU,
CPC, APHRO, and GPCC, due to the interpolation containing
station data in neighboring countries. Thus, it is clear that the
optimized LZU dataset accurately describes the climatic con-
ditions close to the national border. Time series of monthly
precipitation datasets displayed in Fig. 6b shows that UD
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provides the greatest annual mean precipitation amount
(604 mm); CMA, LZU, GPCC, CPC, and CRU gives similar
mean precipitation amount (579 mm, 578 mm, 586 mm,
578 mm, and 583 mm, respectively), and APHRO provides
the lowest annual mean precipitation amount (532 mm) (Fig.
6b). All of the precipitation datasets exhibit a similar pattern of
fluctuations superimposed on a long-term trend (Fig. 6b). It
can be seen that LZU is the most similar to CMA, and LZU
can well depict the temporal variations of air temperature and
precipitation in China.

Further, the LZU0025 with a high spatial resolution was
compared with the CAMP Tibet surface meteorology station
dataset. Table 4 shows during the 2003—2004 period, the cor-
relation between these two datasets for each station was high
especially for air temperature element. While it is noted that
the correlation for precipitation was not significant for few
stations and the comparison was only confined in this short
time period. A caution should be taken when using LZU0025
precipitation dataset in this region, and it is suggested that the
accuracy of LZU00025 precipitation dataset needs to be fur-
ther checked once local station data on similar mountainous
and remote areas are accessible.

The above results suggested that LZU performs well and
LZU0025 can be so far reliable. LZU0025 with a much higher
spatial resolution provides more information about local cli-
mate state. To illustrate the advantage of LZU0025, here, we
give an example of comparisons about the spatial distribution
of climate types in China deduced from different datasets. The
Koppen and Trewartha climate classification (K-T) (Trewartha
and Horn 1980) was used, which was the modification of
Koppen’s original approach on adjusting both the original tem-
perature criteria and the thresholds separating wet and dry cli-
mates (Belda et al. 2014). Figure 9 shows that LZU0025 and
other datasets share a similar distribution pattern of climate
type during 1991-2000 period, and the main types covering
China are the arid and semiarid climate (BW and BS), subtrop-
ical humid and subtropical winter dry climate (Cf and Cw),
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Fig. 9 Spatial distribution of the K-T climate types in China (1991-2000). K-T means Koppen and Trewartha climatic classification (Trewartha and

Horn, 1980)

temperature continental and oceanic climate (Dc and Do), and
tundra climate (Ft). This consistent distribution further illus-
trates the reliability of LZU0025. Figure 9 also shows that
LZU0025 and CMA provided more detailed climate type than
that from global datasets. UD and CPC only deduced the tun-
dra climate (Ft) in the southwest of China, while for LZU0025
and CMA, besides that, they depicted the dry climate of arid
and semi-arid types (BWk and BSk) (Fig. 9). Compared with
CMA, LZU0025 could provide more information of the distri-
bution of local climate. LZU0025 identified the tundra climate
(Ft) along the west of Himalayan Mountain as the global
datasets showed, while CMA could not (Fig. 9), and this was
attributed to the LZU0025 interpolation considering the sta-
tions in the neighboring countries. What is more, it is seen that
LZU0025 with higher spatial resolution provided more de-
tailed information of climate type, which is represented by
the occurrence of scattered points from LZUO0025 in Fig. 9.
Taking climate types in the region of 35°N—40°N and 95°E-
105°E as an example, it was found that LZU0025 could de-
duce the subpolar continental climate (coldest month <

—10 °C) due to its higher resolution while CMA and other
datasets could not (Fig. 9). Therefore, the high spatial resolu-
tion of LZU0025 is obviously a major advantage.

4 Conclusions

This paper used extended meteorological station dataset and
ANUSPLIN software to construct monthly air temperature and
precipitation datasets with a spatial resolution of 0.025° in
China (named LZU0025) and corresponding error datasets,
for the interval Jan 1951 to Dec 2011. The accuracy of
LZU0025 was evaluated by analyzing diagnostic statistics for
climatic surface fitting and errors statistics based on compari-
sons between interpolated values against withheld stations da-
ta. Furthermore, taking the dataset from China Meteorological
Administration (CMA) as the reference, LZU0025 was com-
pared with other existing datasets. The explicit procedure was
comparing three indices of standard deviation, mean, and time
trend derived from these datasets in Taylor diagrams. The
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results indicated that the constructed LZUOQ025 is reliable (ac-
cessible from https://doi.pangaea.de/10.1594/PANGAEA.
895742) and can be used as a basis for research on regional
climatic change monitoring, regional hydrological cycle
simulation, and precision agriculture modulation under global
climate change. The next step is to use LZU0025 to analyze the
climate types changing in China, which will add extra
evidences on understanding climate change.
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