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Scale effect and error analysis of crop LAI inversion
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Abstract: Leaf area index (LAI) is an important bio-physical character of vegetation and can be effectively achieved through
remote sensing technology. However the LAI inversion from low resolution data induces a scaling bias due to the heterogeneous
of the surface and model non-linearity, which may cause the scale effect on the LAI estimate. In this work, the Yingke oasis of
Heihe River is selected as the study area. Based on Hyperion data, a two-layer canopy reflectance model (ACRM) is introduced
to calculate LAI. The low resolution LAI are then achieved in two ways: LAlnean, the mean of LAI, is directly calculated from
Hyperion; and the LA, is computed from linear cumulative Hyperion data. Statistics shows that there is a serious underestima-
tion of LAI,. On the basis of LAI-NDVI regresion equation, the Taylor Mean Value Theorem is applied to creat an error factor
and to conduct scaling error correction. The result of error correction ( LAl ) has a high relationship with LAlmean, which shows
that the method is effective and suitable for scale effect correction and can be used to correct other LAI product, such as MODIS
LAI. Finally, the causes for scaling bias are discussed. It is found that the spatial heterogeneous is the key factor which may lead
to the error in LAl inversion.
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1 INTRODUCTION

Leaf area index (LAI) is an important bio-physical character
of vegetation, and the scale effect of LAI inversion through
remote sensing technology has attracted much concern in recent
years. Tian et al. (2002, 2003) had conducted a multi-scale
analysis of the MODIS LAI product, and presented a method
for the MODIS LAI calibration based on the field sampling
strategy. They pointed out that when the scale increased, a large
number of vegetation types were mixed together, which will
cause errors in the LAl inversion. Garrigues et al. (2006) used
NDVI, R, and NIR to establish semi-empirical models based on
single variable and pairs of variables, and then they analyzed
the scale effect of LAI inversion and corrected the errors of
multi-resolution inversion. After an uncertainty analysis of LAI
retrieved from a spatially heterogeneous scene, Yao et al. (2007)
pointed out that different components of the mixed pixels had
great impact on LAl inversion. Zhang et al. (2008) had
proposed an up-scale conversion method based on NDVI pixel
decomposition. However, the research did not discuss the
inherent mechanism of scale effect. Xu et al. (2009) established
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LAI conversion formula among different scales based on crop
canopy reflectance model. All of these studies point out that
scale effect widely exists in LAI retrieval with remote sensing
data of different spatial resolutions.

In this paper, the Yingke oasis of Heihe River is selected as
the study area. Based on Hyperion data, a two-layer canopy
reflectance model (ACRM) is introduced to calculate LAI.
Remote sensing data of different resolutions are obtained by
linear accumulation method. Based on LAI-NDVI regression
equation, Taylor’s mean value theorem is introduced to correct
the errors of LAI retrieved from low resolution data and realize
the large-scale LAI calibration.

2 STUDY AREAAND MATERIALS

2.1 Description of the study area

Heihe is originated in Qilian County, Qinghai Province,
situated in the middle of Qilian and Hexi Corridor, bordered
with Mongolia Province in the north, connected with Wuwei
Basin in the east, and adjacent to Shule River Basin in the west.
Heihe Basin is the second largest inland river basin in north-
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west China, covering an area of 142900km?. The average an-
nual precipitation is low, be coupled with the impact of human
activities, the vegetation cover in this area is inhomogeneous

Category I Alpine meadow [ Desert steppe
Grassland Dry land
B svamp I Forcst " Irrigated land

Cold desert | Mountain meadow Residential area

and varied seasonally. The study site in this paper is located in
the Yingke oasis of Heihe River where the main vegetations are
crops such as wheat and corn (Fig. 1).
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Fig. 1 Location of the study area

2.2 Data preprocess

2.2.1 Description of the data

Hyperion data of July 15, 2008 in the Yingke oasis of Heihe
River is used in this study. Hyperion is one of the three kinds of
sensors in the Earth Observation Satellite (EO-1) which
launched on November 21, 2000 by National Aeronautics and
Space Administration (NASA). The Hyperion is a push-broom
instrument, providing a hyper-spectral image capable of resolv-
ing 242 spectral bands (VNIR400—1000nm, SWIR, 900—
2500nm) with a 30m spatial resolution. The corresponding filed
data is collected from June 13 to June 26, 2008, with crop LAI
relatively stable in this period. Samples leaves’ lengths and
widths were measured both with manual work and LAI-2000,
LAI-3000 instruments. Correction factors for each crop were
calculated by comparing the manual measured value and the
instrument one. Crop LAIs were finally gotten by length and
width of crop leaf multiplied by the correction factors.
2.2.2 Data preprocess

In this study, atmospheric correction of Hyperion is achieved
with FLAASH model. Geometric correction of Hyperion data is
conducted with the image-to-image registration method com-
bined with a LANDSAT ETM data. During the correction, the
spatial error is controlled under 0.5 pixels. The geometric pro-
jection of the image is UTM projection after the correction.

The relatively high correlation between Hyperion bands is
widely recognized. Therefore, a reduction in band number
without significant information loss (Luo, 2002) is carried out

under the principle of larger standard deviation and smaller
correlation coefficient. The process of band selection is fol-
lowed as: (1) remove the bands of small standard deviation;
(2) the residual bands are divided into five groups according to
the wavelength such as blue band, green band, red band, NIR,
SWIR, then seven bands of larger standard deviation are se-
lected in each group; (3) less correlative bands are selected after
correlation analysis of bands in each group. Finally, 14 spectral
bands are identified for this study (Table 1).

Table 1 Hyperion bands selection for this study

No. Hyperion band Wavelength/nm
1 14 487.87
2 18 528.57
3 21 559.09
4 23 579.45
5 26 609.97
6 34 691.37
7 37 721.90
8 40 752.43
9 50 854.18
10 54 894.88
11 83 972.99
12 88 1023.40
13 92 1063.79
14 96 1104.18
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3 LAI INVERSIONS

The crops present horizontally uniform distribution in the
maturity stage, as shown in Fig. 1. A two-layer canopy
reflectance model (Kuusk, 2001) is introduced to calculate LAI.
The ACRM model contains PROSPECT leaf optical model
(Jacquemoud & Baret, 1990), simulating the reflectance and
transmittance of leaf from 400nm to 2500nm through the func-
tion relationship of the leaf structure parameters and biochemi-
cal parameters. The model can well explain the specula reflec-
tion on leaf surface and the “hot spot” phenomenon, and also
has a high computational efficiency. The calculation of multiple
scattering in the model is same to SAIL model (Verhoef, 1984).
This model is a one-dimensional bidirectional turbid medium
radiative transfer model that has been later modified to take into
account the hot spot effect in plant canopy reflectance (Kuusk,
1985). Turbid medium defines the canopy as a horizontally
homogenous and semi-infinite layer that consists of small
vegetation elements that act as absorbing and scattering parti-
cles of a given geometry and density. Consequently, the model
is best adopted for use in homogeneous vegetation canopies
(Verhoef, 1984; Feng & Zhao, 2005).

Hyperion image and NDVI data of July 15, 2008 in the
Yingke oasis of Heihe are shown in the Fig. 2. Before LAl inve-
rsion, the input parameters (such as leaf area index, leaf size
parameters, chlorophyll content, soil parameters, etc.) of the
ACRM model are set up according to the ground truth data. Fig.
2(c) is the iterative inversion results, and verified by the
ground-measured LAI data (Fig. 3). The histogram of the rela-
tive error shows that LAI retrieved and LAI measured have a
good consistency, with correlation coefficient of 0.79 and
RMSE of 0.336. The validation results show that the LAI inve-
rsion based on ACRM model is effective, reflecting the condi-
tions on the ground, and can be used for further analysis.

4 QUANTITATIVE ANALYSIS OF SCALE EFFECT

The ACRM model is used for getting LAI value of the study
area, while the main purpose of this paper is to study the scale
effect of crop LAI, analyzing the source of scale effect and
correcting the scaling errors. In order to reduce the impact of
the extrinsic factors when retrieving LAI from different resolu-
tion data, multi-scale remote sensing data are obtained through
linear aggregation of Hyperion 30m reflectance data, and then

Fig. 2 LAl inversed from Hyperion data
(a) Hyperion image (locations of ground sample points); (b) NDVI; (c) LAI
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Fig. 3 Error Analysis of LAI inversion
(a) Scatter diagram of relative error; (b) Histogram of relative error
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all the data will be used for discussing the scale effect in the
LAl inversion.

4.1 The simplified equation for analysis of scale effect

The canopy reflectance model can be simply expressed as:
p=F(#,LALLAD,N,Cy,,Cy,Cothers 95) 1)
= f (LAI)
where p is the canopy reflectance; ¢ are the external parameters
of model; LAD is the average leaf angle; N is the number of
layers; Cy, is the chlorophyll content; C,, is the leaf water con-
tent; Cqmer IS the dry matter content; psis soil reflectance.

As known that there is nonlinear function relationship be-
tween LAI and NDVI (Zhao, 2003), then we use Eq. (1) to
establish the relational between NDVI and LAI:

NDVI = Pair —Pr _ fy(LAIL) — fo(LAI)
Prir +or - TL(LAD + fo(LAI)
that is, LAl = g(NDVI) 2

Eq. (2) is used as a basis for the scale effect analysis and
bias correction later. The formula is very simple, and the NDVI
is sensitive to the land cover and can reflect the background
impact of plant canopy, so it is conducive to analyze the scale
effect of multi-scales LAI inversion under variable spatial
structures.

=G(LAI)

4.2 Scale effect of LAI inversion

The low resolution LAI are achieved in two ways. ‘LAl yean’,
the mean of LAI (30m) , is directly calculated from Hyperion
and used as the low resolution LAI true value (Fig. 4(a)).
‘LAI,’, the LAI retrieval from linear aggregation image (300m)
of Hyperion 30m reflectance data, is used as the low resolution
LAl inversion value (Fig. 4(b)).

LAI, retrieved from low resolution remote sensing image is
an underestimation compared with LAl (Table 2), which
may caused by the model non-linearity and landscape spatial
heterogeneity.

(&

Fig. 4 Results of two up-scaling methods
(8) LAlean; (0) LAI,

Table 2 Comparison of LAI before and after correction

min max mean
LAI, 0 3.45 1.27
LAI, 0 3.39 1.96
LAl mean 0 3.43 2.06

err=LAl,—LAl e, is defined as the error factor of up-scale
LAl inversion and the following formulas are obtained based

n
on Eqg. (3): LAI, = g(NDVI,) ~ g [12 NDVIiJ . Therefore,
Nia

n n
err = LAl — LAl e, = g(iz NDVliJ—iZg(NDvh)
i=1 i=1

=g(mNDVI)—£ig(NDVIi)
Nia ®)

In Eq.(3), mNDVI:%Zn:NDVIi, where ‘mNDVI’ is the
i=1
aggregated NDVI value within the large scale NDVI, NDVI iy,
NDVl e are the minimum and maximum of the small scale
NDVI values, and mNDVIe[NDVlyin, NDVl]. Then the
Taylor Mean Value Theorem is applied to design the polyno-
mial expansion of ‘LAl e’ around mNDVI.

n
LAl ean = i{Z[g (MNDVI)+g'(MNDVI)(NDVI; — mNDVI)
i=1

2

where R is a higher order infinitesimal of (NDVI-mNDVI1)?,
therefore,
err ~ g(mNDVI) — g(mNDVI)

N g"(MNDVI)(NDVI; — mNDV|)2]+R}

n
—129’(mNDVI)(NDVIi —mNDVI)
nNia

n
- Ziz g"(MNDVI)(NDVI; — mNDVI)?

i=1

= —g'(mNDVI)[ii(NDVIi - mNDVI)J
i=1

—;g”(mNDvn[li(NDwi - mNDVI)z]

i=1
-1 g”(mNDVI)(lzn:(NDVIi - mNDVI)Z]
? i @

n
where 1Z(NDVIi - mNDVI)2 is the variance of NDVI value
nia

n
at the small scale image, and o\py = 1Z(NDVIi —~mNDVI)? .
nia
Finally, the error factor is simplified by Eq. (5):

err = LAl — LAl ey = —%JNDV, xg"(MNDVI)  (5)

Therefore, the errors of LAI retrieved from large scale image
can be adjusted through variance of NDVI value before agg-
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regated and the second order differential equation of g. That is,
scale conversion of LAI can be achieved by Eq. (5).

5 ERROR CORRECTION AND ANALYSIS

5.1 Error correction

LAI retrieved from low resolution remote sensing image is
thus adjusted by Eq. (5):

LAI, = LAI, —err = LAI, +%GNDV, xg"(MNDVI)  (6)

Where LA, is the low resolution LAI that has been cor-
rected, g”(mNDVI) is the second order differential equation of
g. Based on the ground truth data, the regression function of
LAI and NDV1 is established as follow:

LAI = g(NDVI) =11.602NDVI° - 6.793NDVI?
+4.306NDVI + 0.002 @

R2=0.81

In the Eq. (7), NDVI is calculated from Hyperion band 34,
50, and the second order differential equation of g is g”
(MNDV1)=69.612 mNDVI-13.586, s0,

LAI,=LAI, + oypy, (34.806mNDVI - 6.793) (8)

LAI, is the result of correction by using Eq. (8). From the
statistics in Table 2, it can be concluded that LAI values are
closer to the “true value” after correction.

Before correction, LAI values are distributed in the upper
left of the scatter (Fig. 5), indicating the underestimation of LAI
retrieved from aggregated reflectance data. After correction, the
correlation coefficient of LAl and LAl eq, is significantly in-
creased to 0.85 and the averages of the two values are closer. It
can be concluded that the method is effective because it takes
the effects of spatial heterogeneity (variance) into account.
Therefore, LAl of 30m resolution can be conversed to large
scale through the method and the method can also be applied
for the calibration of low resolution LAI products, such as
MODIS LAI product.

Fig. 5 Correlation between LAl and LAl before and after correction

(a) Before correction; (b) After correction

5.2 Error analysis

Above analysis shows scale effect of LAI inversion from
different resolution remote sensing images and underestimation
of the inversion result from low resolution image. The influence
factors are discussed in the following study.

5.2.1 The error caused by spatial heterogeneity

Due to the uneven distribution of vegetation, pixels consist
of different land types appear during spectra linear aggregation.
There will be a considerable uncertainty of the results if the
ACRM model is applied to retrieving LAI in this region.

Base on Hyperion NDVI, formula f=(NDVI-NDVI,)/
(NDVI,—NDVIs) (where, NDVI is Normalized Difference
Vegetation Index; NDVI; is the NDVI of bare soil are; NDVI,
is the pure vegetation cover area) is applied to calculate vegeta-
tion coverage (Zhang, 1996), and then an inversion error is
defined as the difference between LAI, and LAlyen. Fig. 6

shows the relationship between errors and vegetation coverage,
that the spatial distribution of vegetation will cause the scale
errors. LAl inversion errors gradually increase with changes of
vegetation coverage, reaching to the maximum at the coverage
of 50%, while the NDVI variance of mixed pixel is also the
greatest with the greatest spatial heterogeneity. When vegeta-
tion coverage is about 45%—55%, the relationship between

inversion errors and vegetation cover is uncertainty. This is
because when the vegetation coverage is determinate: (1) the
vegetation spatial distributions within mixed pixel are inconsis-
tent and effects of the interaction between sub-pixels are vary-
ing; (2) combinations of vegetation types within mixed pixel
are not always the same. When vegetation coverage is high,
pixel is of a better uniformity and the scale error is smaller.
Because NDVI is sensitive to the vegetation cover and can
reflect the background impact of plant canopy, we establish a
scatter gram (Fig. 7) between NDVI variances and scale errors
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to analyze the variation of errors. Fig. 7 shows that, at the low
vegetation coverage, with the increase of spatial heterogeneity
at the mixed pixel, the scale error of LAI inversion is also in-
creased.

1.0
0.8

0.6

Error

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0
Vegetation coverage

Fig. 6 Errors caused by spatial heterogeneity

08k

Error

0 0.02 0.04 0.06
NDVI variance

Fig. 7 Relationship between errors and NDVI variance

5.2.2 Error caused by model non-linearity

The model non-linearity is one of the reasons that caused the
inversion error. By selecting an area consisted of bare soil and
crops within the study area, we extract pure vegetation canopy
reflectance within the mixed pixels. The effect of spatial het-
erogeneity is supposed to be eliminated. Then the true LAI (Xu,
2009) that consistent with the concept of crop sowing is calcu-

1 n
FAGY

a

lated by applying the formula LAlpeqn ' = . Where

LAl e’ does not mean the same as LAlmean, LAIean' ignore
the spatial heterogeneity of the surface structure and can be
applied to study the errors caused by model non-linearity.

1 1

=20 | =2 facrm(o)
niz n

-—= ©)
a

el’r/ = fACRM

where p; is the reflectance before aggregation, a is the propor-
tion of crops.

Overall, error caused by model non-linearity is small (Fig. 8).
The maximal error is about 0.12 when vegetation coverage is
50%. The conclusion is consistent with the studies of Zhang et al.

.
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Fig. 8 Errors caused by model non-linearity

(2008) and Chen et al. (2006). The model non-linearity does
affect LAI inversion, but not the key factor, and can be ignored
if the coverage is very low or coverage is much too high.

6 CONCLUSIONS

(1) ACRM model is introduced to retrieve crop LAI in the
Yingke oasis of Heihe Basin. The LAI retrieved from low
resolution data is underestimated. The average LAl directly
calculated from Hyperion is about 2.06, but it is only 1.27 when
the LAI is retrieved from up-scaling data. On the basis of
LAI-NDVI regression equation, the Taylor Mean Value
Theorem is applied to analysis error factors and achieve the
correction of low resolution LAI values. The method could also
be used for calibration of other low resolution LAI products,
such as MODIS LAI product.

(2) After impact analysis of model non-linearity and land-
scape spatial heterogeneity on LAl inversion, it is found that
the model non-linearity is one of the reasons that cause the
inversion errors, but not the key factor, and can be ignored in
some specific applications if the coverage is very low or cov-
erage is much too high. The main factor that causes the scaling
errors is the uneven distribution of surface vegetation, that is,
the spatial heterogeneity is a key factor in LAI inversion. Alt-
hough the scale bias is a coupling error caused by spatial het-
erogeneity and model non-linearity, it is not considered yet in
this paper and need to be analyzed in further study.

(3) Further research will focus on studying the influence

of the spatial heterogeneity caused by different combinations of

vegetation (corn, wheat, and other vegetation), establishing

an error correction model in multi-spectral reflectance space.
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