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Abstract: This paper estimated HJ-1 land surface albedos in the Heihe region using the backup algorithm of Moderate Resolution
Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (method I ), the
Bayesian inference-based algorithm (method 1) and the Lambertian surface algorithm (method IlI). Compared inversed albedos
with surface observations, statistical analysis results showed that: (1) The high resolution albedos from HJ-1 CCD data can provide
spatial distribution of underlying surface as well as surface details. Different land cover types’ statistic values indicates that method
I and method Il capture similar results, with the absolute error of 0.01 and the relative error of 4% as compared with albedos
from MODIS, while method Ill has the absolute error of 0.03 and relative error of 13%.(2) The improvement in the albedo by
method | and method II is almost independent to land cover types, capturing relative error between 2% and 8% ; However, the
temporal reliance of estimated albedo is more significant, and the improvement is more obvious in the maturity than in the dorman-
cy. (3) Surface albedos estimated by method I and method II have better consistency with field observations.The root mean
square errors are less than 0.05, and relative errors are less than 23% , while results of method Il are 0.069 and 36.3%, respective-
ly. (4) The retrieval of albedos based on the prior knowledge may depend on the geometry of the sun and the observation, and thus
depend on the season and the latitude, as well as sensor specifications. This study will provide significant understanding for space-

borne albedo retrieval which lacks of sufficient multi-angular observations.
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1 INTRODUCTION

Land surface albedo is one of the key parameters in the surface
radiation budget, the long range weather forecasting and global
change researches. It has great significance for the study of global
and regional climate models (Dickinson, 1995). Albedo is defined as
the ratio of reflected radiation from the surface to incident radiation
upon it (Nicodemus, et al., 1977). BRDF shapes of different land
cover classes are variable (Strugnell & Lucht, 2001; Jin, et al., 2003),
and accurate estimation of surface albedo from satellite data needs to
consider the impact of surface reflectance anisotropies.

The satellite observations made the measurements available at
both regional and global scales, but the data are still limited because
of the noise and angular samplings. At present there are mainly three
ways to estimate surface albedos from limited observations:

Method [ is based on the backup algorithm of MODIS BRDF/
albedo (Strugnell, et al., 2001). Early researches about Very High
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Resolution Radiometer (AVHRR) show that this method considers
the surface anisotropy to improve surface albedo retrieval accuracy
(Strugnell & Lucht, 2001; Strugnell, et al., 2001). At present the ar-
chetypal BRDF shapes of this method have been associated a priori
with each pixel globally (Schaaf, et al., 2002). Compared the backup
inversed albedos and full inversed ones with field measurements, the
result showed that there is little difference between these two
methods (Jin, et al., 2003; Salomon, et al., 2006; Liu, et al., 2009).
Method 1I is based on the Bayes inference theory. It takes field
measured data sets as a priori knowledge (Li, et al., 2001). The
method is dependent on a priori estimates of model parameters and
their covariance matrix of the surface observation data. We can use a
maximum likelihood algorithm to minimize a cost function to get the
Bayesian maximum likelihood solution. The method is applicable for
the data that has limited angular samplings, and it overcomes the
shortcoming of the large amount of prior knowledge in the MODIS
backup algorithm. It provides a new theoretical framework for the
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establishment of global BRDF database as well as the global BRDF
and albedo retrieval. The main problem for this method may be the
accumulation of the prior BRDF knowledge and how to constrain the
prior knowledge (hard boundary, 8 boundary and soft boundary).

Method Il is based on Lambertian assumption. It takes the
single direction of observation data as the surface albedo. This meth-
od does not consider the influence of surface anisotropy and does not
conform to the characters of anisotropic surface. Kimes’ early
research showed that Lambertian assumption can result in errors up
to 45% (Kimes, 1985).

Information of remote sensing observations is always limited,
and the priori knowledge is the key factor to solve the problem. The
priori knowledge accumulation and application is necessary to
improve the retrieval accuracy of the surface parameters (Li, et al.,
2001). Estimating land surface albedos based on a priori knowledge
has attracted more and more attention. Li (1998) described the
important role of a priori knowledge in model inversion and fitting
the field observations by using the kernel-driven BRDF model to
obtain the model parameters, which was considered as a priori
knowledge database of the surface BRDF (Li, et al., 2001).
Pokrovsky (2002) used a statistical inversion method for inversion of
BRDF models; The MODIS BRDF and albedo magnitude algorithm
is based on a priori land surface BRDF database (Strugnell & Lucht,
2001); Wang (2007) proposed a regularizing kernel-based BRDF
model inversion method that can apply to the data that has a limited
angular sampling or a high degree of linear correlation as well as
noise influences.

The main objective of this paper is to estimate land surface
albedos from HJ-1 CCD data. Based on the kernel-driven BRDF
model (RossThick-LiSparse-Reciprocal) (Lucht, et al., 2000), we
used the backup algorithm of MODIS BRDF / albedo (method I), the
method based on Bayes inference theory (method 1II), and the
Lambertian assumption algorithm (method M) to inverse surface
albedos, respectively. At last we compared the inversion results with
albedo from MODIS and the field observations, and analyzed the
differences among the estimated albedos. This research can provide
some basis theory for the new method and for the production of
regional high-resolution albedo products.

1.1 Introduce to study area

The study area is located in the upper areas of the Heihe region,
the middle of Hexi Corridor, including Zhangye City and the
surrounding oasis and part of Qilian Mountain. Natural variation is
obvious within the region, where the mountain, vegetation and desert
own distinct landscape areas and land cover changes obviously with
the seasons. Inversing the albedo of this area has great significance.
Elevation of the study area is about 1500 m. Four kinds of land
cover types including woodland, grassland, cropland, bare land
occupy more than 95% of the total area. There is a flux tower in the
cropland near Yingke oasis station. It can provide the shortwave
broadband surface albedos (Ma, et al., 2008).

1.2 Data Processing

Data used in this research included HJ-1 CCD data, MODIS
products (BRDF/albedo product MCD43, aerosol product MODO04,
global land cover dynamics product MCDI12Q2), 73 sets of field
observations (Hu, et al., 1997; Strugnell, et al., 2001; Li, et al.,
2001), flux tower measurements and land cover data of Heihe region.

HJ-1 CCD data were obtained by four CCD cameras on HJ-1A
and HJ-1B satellites. Each satellite could provide a swath width of

700 km with a spatial resolution of 30 m. The observation cycle is
two days. Differing from the Landsat TM, HJ-1 CCD camera can
provide the maximum viewing zenith angle of 35°. Fig.1 shows the
spatial distribution of the sun and the observation geometry of a
pixel in the study area in June. It can be seen from the Fig. 1 that
HJ-1 A and B can provide 14 direction observations in one month,
and these observations mainly distributes on the principle plane and
can represent the anisotropic characteristics of the surface. But Fig. 1
did not consider the quality of the observations. Due to the effect of
cloud or other reasons, it is hard to use all of the observations in
practical model inversion. Atmospheric correction of HJ-1 CCD
images was used with 6S algorithm. Validation results show that for
grass and bare soil, this method yielded an average error of 8% in
the red band and 35% in the near-infrared band (Sun, et al., 2010).
For wheat, this method leaded to an error of 3% in the near-infrared
band (Du, et al., 2010). CCD data used in this study don’t have obvi-
ous clouds in the study area. We used the average value of MODIS
aerosol product (MODO04) as aerosol optical thickness. Compared the
spectroradiometric (Wang, et al., 2009) and Normalized Difference
Vegetation Index (NDVI) of different land covers before and after
calibration, the results showed that this method can effectively elimi-
nate the effect of the atmosphere, and the error in atmospheric
correction in the study area should be less than 10%. Land cover
data was obtained by comprehensive HJ-1 B-CCD2 data on May
22™,2009 and landusemap of the study area.

MODIS is a key instrument aboard National Aeronautics and
Space Administration’s (NASA) Terra and Aqua satellites and
provides global BRDF/albedo products. The MODIS BRDF/Albedo
algorithm makes use of corrected multi-angle, multi-spectral data to
provide land surface albedo products every 16 days (Schaaf, 2002,
2011). A lot of works have been done to validate MODIS land
surface reflectance and albedo products (Liang, et al., 2002; Jin, et
al., 2003; Salomon, et al., 2006; Liu, et al., 2009). Results showed
that the absolute accuracy of the broadband albedo is about 0.02 to
0.05. At present, estimating the albedo from single direction and high
resolution data also use MODIS products as a priori knowledge
(Shuai, et al., 2011). In this research, MODIS data provides a priori
knowledge of surface anisotropy for method I. According to the lati-

Fig.l HJ-1 angular sampling in June 2009
(The radius represents the zenith angle with an interval of 10° and the
polar angle represents the azimuth. Solid circles refer to the viewing

direction and the open triangles refer to the location of the sun)
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tude and longitude, we used the MODIS Reprojection Tool (MRT) to
obtain the MODIS albedo products of the study area, and used the
nearest neighbor algorithm to resample the data to 30 m resolution.
HJ-1 CCD and MODIS band characteristics are shown in Table 1.

Table 1 Sensor character of MODIS and HJ CCD

Sensor MODIS HJ CCD
Spatial resolution 500 m 30 m

Band name Band Interval/nm Band Interval/nm

Blue 3 459—479 1 430—520

Spectral
Green 4 545—565 2 520—600
range

Red 1 620—670 3 630—690

Nir 2 841—846 4 760—900

73 sets of field observations provide a priori knowledge for
method II. They were collected from many different sources, cover-
ing a large variety of land cover types. Most of these datasets are
from PARABOLA radiometer measurements (Deering, et al., 1986)
in FIFE and BOREAS campaigns. Some other datasets were from
radiometer measurements by Kimes (Kimes et al., 1985, 1986),
Ranson (Ranson, et al., 1985), and Irons (Irons, et al., 1992). There
were also AVHRR data, airborne POLDER data (Leroy, et al., 1996)
and scanning cloud absorption radiometer (SCAR) data (Tsay, et al.,
1998). These datasets were acquired in the red and near infrared
bands, and most of them were used for validating the models’ fitting
capabilities (Li, et al., 2001; Hu et al, 1997). We used the
RossThick-LiSparse-Reciprocal (RTLSR) BRDF model fit those
observations and smooth noise samples (Li, et al., 2001), excluding
the data that have large fitting error. Finally, 69 datasets were used in
this study.

Yingke oasis station is located in the farmland of Zhangye in
GanSu province with a longitude of 100°25'E, latitude of 38°51'N
and an altitude of 1519 m above sea level. Equipment of automatic
meteorological measurements at the Yingke oasis station
continuously observes and records 305—2800 nm hemisphere
upward and downward radiance energy. After processing there is an
observation every ten minutes (Ma, et al., 2008). In this study, the
20-min (around the time of HJ-1 passing over the study area) field
observation albedos were averaged from the measurements, and then
they were used for the albedo comparison.

2 METHOD BASED ON A PRIORI KNOWLEDGE

In this section, we first overviewed the semi-empirical kernel
driven BRDF models, and then presented a brief introduction to the
backup algorithm (method I) of MODIS albedo and algorithm based
on Bayesian inference (method 1), and finally summarized the
comparison of the inversion results between the different methods.

Semi-empirical kernel driven BRDF models are expanded into a
linear sum of kernels, characterizing different scatting modes. This
model was mathematically described as the linear combination of the
isotropic kernel, volume scattering kernel and surface scattering
(Roujean, et al., 1992; Wanner, et al., 1995; Lucht, et al., 2000).

R(0,,0,,0) = fi,(X) + [, (AM)K,,(0,,0,,¢) +
Sl XK, (8,6, ,¢) (1)
where R is the surface bidirectional reflectance, and K|, represents
the volume scattering kernel caused by a horizontal layer of

randomly distribution leaves, and K, represent the surface scattering

geo

kernel caused by shadows of natural objects. They are the functions

of viewing and illumination geometry; 6;, 6,, and ¢ are the solar
zenith, view zenith and relative azimuth angles; f;.,(A) , f.,(A) and
f.eo(X) are the spectrally dependent BRDF kernel weights or parame-
ters. Kernels are only the functions of solar and sensor geometry, so
we can get their integrals in advance. BSAs and WSAs are
calculated by integrating the kernel value over the reflected radiation
hemisphere or both the reflected and incident radiation hemisphere
(Nicodemus, et al., 1977; Lucht, et al., 2000). Black and White sky
albedos are defined in the ideal condition, and the combination of the
two albedos can describe the real surface albedo (Lewis & Barnsley,
1994).

a(8,) = [1-5(7)]1p,.(6,) +S(1)p,. (2)
where S(7) is the proportion of the diffuse skylight, it is a function
of the aerosol optical depth 7. Excepting the large solar zenith angle
condition, Eq.(2) can get the surface true albedo approximately.

2.1 Method I-based on the MODIS backup algorithm

Method 1 is based on the MODIS backup algorithm which
based on the surface BRDF shape archetype. The basic theory is
assuming that interclass BRDFs are broadly similar and that differ-
ences are one of degree, rather than substantial changes in the shape
of the BRDF function. We can use the BRDF shape archetype to fit
the BRDF to the observations and to retrieve surface albedo
(Strugnell, et al., 2001; Jin, et al., 2003). In this method we intro-
duced the MODIS albedo product MCD43 Al as a priori knowledge
of surface anisotropy. Using MCD43 A1 and RTLSR model, we can
obtain surface reflectance at any viewing and illumination geometry
conditions. When the sensor provides enough observations, we can
fit the BRDF archetype to observations by the least-squares fitting
method, and hence get surface albedo. Obviously, for the HJ-1 CCD
data, there is only one observation for each image, so we can’t use
the least squares method to find the closest solution. However, we
can assume that the BRDF shapes of MODIS and HJ-1CCD data are
broadly similar and that differences are one of degree rather than
strict demarcation. Hence, we may define the relationship of surface
BRDFs between MODIS and HJ by BRDF, =axBRDF, , where
BRDF,, is the MODIS BRDF and BRDF; represents the HJ-1
BRDF associated with MODIS BRDF, a is a multiplicative factor,
which is used to generate a similar BRDF from MODIS by consider-
ing the changes in directional effects, it fellows that a=p,/p_, p, is
the HJ CCD observations and p,, which has the same observation con-
dition with p,, is the direction reflectance of MODIS. In this method the
MODIS BRDF product is taken as a priori knowledge of underlying
surface anisotropy and improves the accuracy of the albedo, and the
value of the surface albedo depends on the HJ-1 CCD observation.

2.2 Method II -based on Bayesian inference

Method II is based on Bayesian inference. When the observa-
tions are limited or poor angular sampling, application of a priori
knowledge is necessary. Through prior knowledge accumulation and
application, Bayesian inference is the basic theory and ideal method
to solve the uncertainty problem. This method takes model
parameters as random variables, which have some kind of prior dis-
tribution, and uses maximum likelihood estimation method to infer
posterior distribution of the parameters (Li, et al., 2001). Prior
knowledge is not relation to a particular land cover type, it fits the
prior knowledge to observations, and surface albedo inversion.

In practice, a simpler approach uses a maximum likelihood esti-
mation that minimizes a cost function (Tarantola, 1987; Rodgers,
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1976):
Cost(X) = (A, X-Y,)'C,'" (A, X-Y,) +
(X-X,)'C,"(X - X,) (3)

where A | is the kernel matrix, C, is the noise covariance matrix of

obs

data noise and model inaccuracy, C, is the covariance matrix of prior

knowledge of X, , X, is the prior best guess of the vector X. Here

obs >
we take the mean of the model parameter derived from 69 data sets.
Table 1 shows prior knowledge distribution for parameters of kernel

driven model.

Table 2 Prior knowledge distribution for parameters
of kernel driven model

Red Nir
Parameter fio S Sieo S S Sio
Mean 0.1064 | 0.0508 | 0.0159 | 0.2892 | 0.1721 0.0295
Variance 0.0108 | 0.0028 | 0.0006 | 0.0091 | 0.0054 0.0012

0.00935 0.00137 0.00155 | 0.00773 0.00014 0.00160
0.00137 0.00170 0.00034 | 0.00014 0.00959 -0.00235
0.00155 0.00034 0.00045 | 0.00160 -0.00235 0.00145

covariance

The total Cost(X) thus consists of two parts, including the cost
of data misfit and the cost of parameter deviation from the prior best
guess. In the case that we don’t have knowledge of C,, so, as an
alternative, we may add an artificial weight to the real observation
part of the cost function (Li, et al., 2001):

Cost(X) = n(A,X - Y, )"(A, X -Y,) +
(X - X)'AL,, A,.(X - X,) (4)
The least squares solution is (Yang, et al., 2003):
T o [N Y s
x = walas e[ [ (5)

where A is the diagonal matrix of eigenvalues and E is the corre-
sponding matrix of column eigenvectors, C, =E XAXE" A, =A""
xE', Y, = A, .xX,= A" xE"xX,, the weight n can be easily
introduced into the standard linear regression. The weight actually

simu simu

depends on how much we trust the new observation and how much
we trust the prior knowledge. The larger the n is, the closer the solu-
tion X will be drawn to the solution plan and the farther it will be
from X, however, it will be less stable. Therefore, there exists an
appropriate value that can make the inversion result stable, while
also keeping more observation information in the inversed
parameters. To get the accurate ratio, Li, et al. (2001) select a well
sampled data, and took the albedo from a full data set as the true
value, then compared their direction observation inversion results
with the true values for different priori ratios. He indicates that for a
single-look inversion problem, a priori information ratio of 3/4 can
get rather stable posterior estimates. We calculated the HJ-1 and
MODIS WSA using different priori ratios and found when n changes
in 1, it will cause a change about 0.02 in HJ-1 WSA, and when the
values of n is around 9, the two WSAs are most similar.

Fig2 shows two inversion methods of surface’s albedos based
on the priori knowledge. In order to validating the different results,
we also calculated the surface’s albedos based on the surface
Lambertian assumption and MODIS broadband albedo at the time
when HJ-1 passes over the study area. The surface’s albedos based
on the assumption of surface Lambert, simply equal to those direc-
tional reflectance (Liang, et al., 2001), MODIS broadband albedos
can be obtained from their products. Considering the characteristics
of seasonal variance of the surface, we chose several temporal HJ-1
CCD data of the study area to inverse the surface albedo. The

temporal feature of the study area can be derived from the MODIS
products (MCD12Q2) of the land surface penology, and the statistics
results of the Enhanced Vegetation Index (EVI) showed that, surface
types in the study area showed obvious seasonal changes. From mid
April, the vegetations begin to grow, and mature in early July, and
EVIs have the biggest values. Deciduous forest begins to senescence
in late August. We totally select 13 HJ CCD data of different days
which are less cloudy and high visible for surface albedo retrieval,
and make a comparative analysis of the results for the typical
phenology.

Fig2 Flowchart of an algorithm for inversing surface
albedo and results compare

3 RESULT AND ANALYSIS

To validate the accuracy of the inverse results, we evaluate the
albedos acquired by the HJ CCD in the following methods. First,
visually evaluate the surface albedos acquired by the two methods
(method I and method II') with the production of MODIS albedos.
Secondly, calculate the mean and variance of different land cover
types, and compare the absolute and relative error of them. At last,
compare the result acquired by the three methods with the
production of MODIS and the ground observation data acquired by
field observations. The ground observation data and the data of the
HJ-1 CCD are the combination of direct and scattering light. In order
to compare the two kinds of data directly, we consider the condition
of atmosphere to translate the black and white sky albedo into the
real albedo, and finally into the albedo with similar spectral range
using the Eq. (2) to reduce the influence of the difference of spectral
resolution. The ground-based 73 groups of observation data have
only two bands: red band and near infrared band. The HJ CCD has a
similar spectral range with the AVHRR. So we consult the transition
coefficient in the procedure from narrow band to board band (Liang,
et al., 2003).

3.1 Result and Statistics

Fig. 3 shows the distribution of shortwave broadband albedo

WWW.jors.cn



290 Journal of Remote Sensing % & 523k 2013,17(2)

acquired by different methods in Heihe region on 14™ July. It also
shows the enlarged figure of the partial region in the study area.
MODIS albedo is the comprehensive performance of the large pixel,
so it is relatively smoother. Like MODIS albedo, the albedo acquired
by two prior based methods can offer the same spatial character of

the land surface, while they can offer more details of the surface. In
the middle of enlarged map, we can see the narrow river, in the low
left corner we can see that the result contains more information
about topography and tectonic. The method 1 uses a priori knowl-
edge in the resolution of 500 m, so it will result in the mosaic phen-

Fig3 Maps of surface shortwave albedo of different methods on Aug 14", 2009
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omenon, especially in the Intersection region, while method II
performs better.

Fig4 shows the mean and standard variance of albedo acquired
by method I, II, Il and MODIS production. In this study, we select
four typical phenologies to study the influence of phenology in the
inverse of albedo. In order to show the difference between results of
various methods, we compared the statistics results of different land
cover types with the MODIS albedo products. By comparing, inver-
sion methods based on a priori knowledge have improved the albedo
accuracy to varying degrees. Compared with MODIS albedos, the
absolute and relative error of method Il is respectively 0.03 and
13%, while the method I and II are 0.01 and 4% . The improve-
ment of the method I and Il is independent with the land cover
type. The relative error is mostly between 2% and 8% . The reason
may be that the difference of BRDF shape between different classes
and in the class is not obvious (Jiao, et al., 2011). So building a clas-
sification system of BRDF change will be helpful to the application
of prior knowledge. The improvement by using a priori knowledge is
dependent on the range of phenology. The improvement of the
season with luxuriant vegetation is better than the fading time. For
example, to the grassland, the relative error is 7% on April 4" while
1% on August 14" Perhaps it is related with the different BRDF
shape of vegetation in the growth period.

Some of the HJ-1 CCD data are influenced by the scattered
cloud, which will influence the inverse of albedo for some land
cover types. Method [ applies a pixel-to-pixel prior knowledge
based method to calibrate the BRDF with only one-direction obser-
vation data, which will transmit all the error of the observation data
to the calculation of albedo. The method Il uses the same prior
knowledge for all the pixels, it balance the proportion of prior
knowledge and observation information with the prior information
ratio. It has some improvement in the error transmission of albedo

inverse procedure.

According to the comparison and analyses above, we discovered
that even though the method I and method II improve the inverse
accuracy of the albedo compared with the method that assumes the
ground is isotropic, the improvement of the accuracy is not obvious
in the Heihe region. To analyze the reason, we choose one pixel
from each four typical land cover types and draw the BRDF of four
different phonologies in the red band and the corresponding reflec-
tance at the same phenology and spatial position (Fig.5). The
position of the solar zenith and view zenith has a few changes as the
phenology changes, which results in a relative change of the position
in the BRDF. Sometimes the reflectance is near the hot spot region
which owns a relative high reflectance such as the forest land in
September in Fig. 5. If we take this reflectance to represent the
reflectance under the isotropic assumption, the albedo will be higher
compared with the traditional nadir observation. As we know, white
sky albedo is the integral of BRDF. So the position of the
observation may result in getting a relatively higher reflectance than
the nadir view under the isotropic assumption for the data acquired
by the HJ-1 CCD. Compared to method IlI, the improvement of
method [ is limited.

From Fig.5, we can also find that there is a high difference in
the BRDF between different land cover types and so do in different
phenologies. As the reflectance in April when the vegetation has not
become green is mostly contributed by the bare land, the shape of
BRDF appears to a typical roof shape. There is a typical peak value
at the position of the hot spot. In May, the forest land and grassland
begin to grow green while the crop has not been sown. So the reflec-
tance of crop land and bare land is still appears a roof-shape BRDF
while the forest land and grassland appears some characteristics of
the bowl shape, which own a typical BRDF effect. All the land cover
types except the bare land appear the bowl shape in August. The

Fig4 Average and varinace of surface albedo obtained through the method I, method I,

method Il and MODIS at four land cover and four temporal (only shows the positive error bar)
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Fig.5 MODIS BRDF shape of four land covers in the red band at different temporal phases
(The BRDF shapes are showed in polar form, the center of the BRDF refer to the zenith direction, the distance to the center refers to the view or sun zenith

angle, the polar angel represents the azimuth. Positive and negative values of the coordinates are used to distinguish the forward and backward of the obser-

vation. The dark point is the HJ-1 CCD observation)

shape of BRDF in September is similar with the shape in April
except the crop land. The BRDF shape of bare land remains the
same as the phenology changes. We can find a similar result through
the near infrared band.

3.2 The validation by the ground observation data

The comparison of the remote sensing product with the ground
observation data is an important procedure for the accuracy
validation. To a certain extent, the ground observation data can
represent the true state of land, but we could not acquire the ground
data at the remote sensing scale. The underlying surface Yingke oasis
station is relatively isotropic. The observation data is typical. To vali-
date the accuracy of the result, we compare the ground data with the
satellite data at different scales (Liang, et al., 2003). Fig. 6 shows the
comparison of albedo acquired by three methods and the MODIS
albedo with the ground observation data. Albedo changes
significantly in different seasons. And it has the smallest value in
summer due to the influence of chlorophyll. Method I and II
together with MODIS products show a good uniformity with the
ground observation data. Except for the day of 181 and 265, the
absolute error between method I and ground observation data ranges

04 --e--Field Observation ~ x Method I + Method 1T
o Method Il A MODIS
- 03
3 R}
% o 3 : ° o g x a
5 02 . 2 §  + % g - i
& *—...—v—‘\/\\ a g
t 34—
« 0.1

94 105 125 154 164 168 181 204 226 238 257 265 277
Time/day
Fig6 Time series of ground measurements albedo, MODIS albedo
and HJ actual shortwave albedo obtained through the method
I, II, I at HJ satellite pass time over Yingke oasis station

from 0.02 to 0.05 and the average is 0.032, which meets the accuracy
requirement of albedo application. There are 5, 4 and 8 days for
method II, Il and MODIS albedo that do not meet the accuracy re-
quirement, the average absolute errors are 0.032, 0.057 and 0.042. At
the same time we can see that the albedo of MODIS product is not
sensitive to the change of season(Schaaf, 2002), which may be influ-
enced by the mixture of pixels.
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Fig.7 gives the scatter diagram of different methods and ground
observation. The Root mean square errors (RMSEs) of the method I,
method [l and MODIS product are 0.043, 0.046 and 0.048, respec-
tively, and the relative error is around 20% . The RMSE of method
Il based on the isotropic assumption is 0.069 and the relative error
is as high as 36.3%. So the anisotropy should be taken into account
in order to evaluate the albedo accurately.
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<
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g
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© MODIS
0 ; ; ;
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Fig.7 Scatter plot of surface albedo for the Yingke oasis station
during HJ satellite pass time

Method I and Il together with MODIS products show a good
uniformity with the ground observation data in most cases, but some-
times there are still some differences. The reasons may be as below:
(1) the scale effect of BRDF (Jin, et al., 2003). Method 1 use the
BRDF of the MODIS albedo product as the prior knowledge while
there is an obvious scale effect between MODIS product and ground
observation data. Method I uses the limited ground observation
data of all research regions in all phenologies without the considera-
tion of the difference in phenology. (2) The influence by the
accuracy of the HJ-1 CCD data. Method 1 transmits all the error of
the observation data to the calculation of albedo. Method Il balances
the proportion of prior knowledge and observation information with
the prior information ratio. The two methods are weak in defending
the noise and need high quality observation data.

4 CONCLUSIONS AND DISCUSSIONS

A priori knowledge-based method can better improve inversion
precision of surface albedo. This paper compared three algorithms
based on retrieval of surface albedo using HJ data in Heihe experi-
ment. The three algorithms include the backup algorithm of opera-
tional MODIS BRDF/Albedo product (method I), the Bayesian infer-
ence-based algorithm (method II') and the assumption of a Lamber-
tian surface reference algorithm (method Il ). By comparing three
results and MODIS product with surface observation data, results
suggest several major conclusions:

In addition to capturing the majority of the ground texture, high
resolution HJ surface albedo based on prior knowledge can also
provide more surface details. However, method 1 used the same
BRDF shape as the prior knowledge in a 500 m MODIS pixel, and
the results showed mosaic appearance which is particularly

significant in fracture area. Compared to method I, method II
showed relatively uniform result.

In lacking of space-borne multi-angular observation data, intro-
ducing the prior knowledge of surface anisotropy can effectively
improve inversion precision of surface albedo. According to different
surface types statistics, compared to MODIS albedo product, absolute
error of the assumption of a Lambertian surface reference algorithm
is 0.03, and the relative error is 13% .The method based on prior
knowledge has the absolute error of 0.01 and relative error of 4% .

For HJ data, in statistical sense, method I and method I are
similar in improving surface albedo inversion precision compared to
MODIS albedo product. Method I only used limited surface obser-
vation data as prior knowledge for all the data, and adjusted the
proportion of prior knowledge in the results through priori informa-
tion ratio. Method I which used MODIS BRDF shape of the same
time phase as the prior knowledge is a pixel to pixel application.
Compared to surface observation data, the absolute error of method

I and method II are less than 0.05, and relative error are less than
23%,, while the results of method Il are 0.069 and 36.3%, respec-
tively. This is generally in line with early results of Kimes (1985).

The improvement of different methods for albedo almost does
not depend on surface types, and has the relative error between
2% —8% . However, the dependence of the phase change is more
significant. The improvement on green-up season is significantly
stronger than dormancy season which is probably related to
vegetation anisotropic characteristics during the growing process.

For single observation angle, the major restriction of the backup
algorithm of operational MODIS BRDF/Albedo product relies on
hard adjustment of priori BRDF shape, so the result is mainly influ-
enced by single error. If adopting more than two observations, the
method can be more effective. Now the idea has been adopted in
albedo operational backup algorithm since from the MODIS five
product.

The above two prior knowledge-based albedo methods may
somewhat depend on sensor specifications, region location, surface
type and time phase. Because different sensor specifications will
decide the relative position of the sun and observation geometry, and
then effect the adjustment of priori BRDF shape. The changes of
region location and time phase affect the geometry of the sun. Mean-
while, the BRDF shape changes of different surface types need
further study. Finding and applying a classification system based on
BRDF shape as well as building typical surface type BRDF prior
knowledge database for making effectively use of BRDF prior
knowledge are the highlight of our work in future.
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ARITAGICHE H R AEF] 30 m 4r FEER, HI-1 CCD Hl
MODIS ¥ BeRHE AN 1 fs o

%1 MODIS 1 HJ-1 CCD &R 3245 4F

RS MODIS HJ-1 CCD
25 [ 4 e 500 m 30 m
WBLARR | WBS | ERE/om | JEBES | EIFS/nm
% 3 459—479 1 430—520
| 7 4 545—565 2 520—600
a 1 620—670 3 630—690
A 2 841—846 4 760—900

H ARSI ) 73 A M S o Bk TR oeae
AP, EAHE 2 Tl 3R 28R 0Y 2 B 5 , REB4r
%R 5 T FIFE 1 BOREAS Hb i 5255, 13X %0 4>
B (0 1% & 2% 26 7 ) PARABOLA (Deering %5,
1986); ib A7 — 7 73 B R P8 T Kimes 55 A (1985,
1986), Ranson %5 A (1985)F1 Irons %5 A (1992), H: 4%
FI%HE 8 B 55 AVHRR %% 9% (Eidenshink %5, 1994),
BLE ) 3R A6 55 7 1) B S £ { (POLDER ) 45 4f
(Leroy %%,1996) 11 SCAR % #i&(Tsay %%,1998), XLk
B RS 2D R 2T A0 WA I B, R 43 B0 B
FAR B IE 2 26 56 19 4% 3K Sl A5 8 1) 0065 e g DA Sk
FREERIFSE(Li %,2001; Hu %5,1997), X S0 %045
BARG AR, B ek YK 3 158 (RTLSR)
X B HEA TN, R 5 4005 5000 R 08 D0 54k 1 2
S, PRI 1) B, X6 X0 e 75 A A ) s 1 4
T (Li 55,2001), HIBR 174005 158 25 K el f & sk R
R , e kBRI 69 RS ST 5.

BRI 2 U0 ul F 3l Gl 0 T H R 4 sk 4k
T 1 25 R DX A B P, ORI ) s 408 A Sk (100°
25'E,38°51'N), i3k = 4 1519 m, (U R 2R =
2. 81 m, LWL ANC 5% 305—2800 nm R =3 7] 4
() L ATHR AN AT ) e I, 2 A S 1) 5 5 B
10 min AL (S B E 45,2008), ZEUE
BT A S R R IR R A R A LR R
HIRATRA HI-1 LRI EEATS 20 min 322 LK
R BIE

2 BETSRIR N SR AR

AT SR TR 25 1 4% UK S BRDF 7,
SRIG TR 41 T MODIS i 55 iz 47 B IR S i 1Y
B T)RIEET DL J0r 08 ) S B 3 S
RN DI Iy RN NCIE RN R i IR
SR BT

RIS T A — 2 ) B SO et 4l
R IR B A PR SRR, BIRS T HFR B —
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AN AEBABOT , HZR U AT DL IR S 45 1) [R] P
SR VAR R LART G2 BB AN [T I 28 53 B A R )
£ (Roujean 5% ,1992; Wanner 55 ,1995; Lucht 55 ,2000):
R(0,,0,,¢0) =fi,(A) +[,(A)K,(6,,6,,¢) +
Jeeo(A) K (6:,6,,¢) (1)
i, Ry PR R, K AR A%, il iR K P
BISTRERE 25 ] S PR RO 5 K ., A LD A%, 1A
ML T3 1e] b 3y 3 A4S 4 S AR B A I 52 554
FHFHE B JUART G2 B, B AT T A A SR 1 UL I £
IR0, ,60, F1 @ 43 327 Y2 A G K T A FDULI
RIUHA LARRS TTALIA 3 o of oo TS 730NN 25 [0 2
STECR AR AU LA DG Ui 3 384378 — m 1
BT L, e TR A R O
ST RESETC R RS KB R T A 50 sREL,
ARG i AT SR S B LA Sy oo T f oo
A AN, WA B AH N 1) 28R K25 I B (p,, ) FH
RS IR (p,.) (Nicodemus 4§, 1977; Lucht 4%,
2000), X PR A 1 2 A A REFEAR K AR BE L4
R M2 B ST e B, RIS M 3 R R R (Lewis Al
Barnsley, 1994):
a(6;) = [1-8(7)1p,.(6,) +S(7)p,. (2)
A, S () R A HURGHT &7 1y Fe il , &t 62e )8
FE 7 B9 eRE, BRAEAEH KRR A IE 5 F X Q2)
HRRE AL AR LT Hh e U5 2] 3R B 5 S R

2.1 &% |-EFMODIS R BREZHE %

Sk 1By A R i B A [m] 3 3R 28 B Y
BRDF AR AH AL I 0] & i 50000 , 308 5 08 00 450 40 #0075
Jc35 BRDF JEAR 15 2] [ B 2 (Strugnell 55,2001; Jin
8£,2003), 7EZAEH, A5 AT MODIS By
RTLSR F ISR il (MCD43 Al), 0 T #8 Hi 4% [4]
SRR A SE IR AN . B SR ] HR A Y
T IE BRDF 4k, 3w 1n 8L, 7T AT 45
FE K FHJL{AT (%) BRDF J 78, 24 £ k25 42 it D450 LA
22 F BE UL BsF, 3 A /N e U, X IS 45 E 1Y
BRDF JEAR #1730 &, 15 2] 400G 08I0 5548 % 10 1
BRDF JEAR(7 &, P A5 21 3% i IR, AR, X
T HI-1 CCD 1L , 24 BA —A A BEWLI £ 48 i
Bt Ses BRDF IR LA R 22 %, FRoR TG
AE X [1) BRDF S50 8 4R 50 42 38 3 2o il 25, XF F
[7]—3b4 ,MODIS #l HI-1 CCD %4} ) BRDF JEAR
FEAE AL, A 2 B AR AN [R] 1155 50, BRI ke mT
PIF =35 B & R IR BRDF, = axBRDF,,, H
BRDF,, /1 565 MODIS BRDF &Ik, i% %6 1 1)

BRDF JE Ik M 3& 4 | Z1) i 1 % 7 (%9 HI-1 4 5T 1
BRDF #§fiF, BRDF,, #/Rif i+ MODIS BRDF 7531
AHMNE HI-1 BRDF JEIR, @ J& — 3B 1, 11T M
MODIS BRDF #l4 i 5 HAH{LL ) BRDF JEAR, 7 i
07 R R RG], ARSI a=p,/p, ,
Hp, A CCD WA , p, 2 5 Y 2 00 3o 4 0K
SR ) TS 1 1 5 CCD $diE A A [R5 A
LT SO 3 T BB Y, 7R B
SX#% MODIS 1) BRDF 124 T #[& [] 5 M S 56 A
P AE AR AL T R # i BRDF 20k, FH T4 55 2
RS0 S A B2, M 2 3R 1 /N B T HI-1
CCD ##z

2.2 Hik I -ET e

SRV LR AET DU 18 SO HI-1 CCD #13%
JIRREE . I % H A L 5 BRDF %5 [H] R AF:
AL, OSSR ARG ARG E , DUt 4 18 38 1
B R AR RN Y 2 ik DR B T8 AN B 2 [R) A R A
ROk %5 8 BRDF R 2 80F il HA K
T e oA Y BEAILAZ 5, 255 FEAS B i 5 dwc R
AL, HERT S 800 J5 5543 (Li 55,2001), 7EIE
B e R AN B R R — R R 28 AL, AN TR
Hi ) 1 2 S o R 3 o O 5 ok AR I 3 ot O
BT 56 56 U0 AT R R DT B 1 b e Fe B
o TESERR NI AR, R SR M A eR AR
52 D1 341 £ KA 2R % (Rodgers, 1976; Tarantola,
1987):

Cost(X) = (A, X - Yohs)’rCfIl(thsX -Y,) +
(X -X,)'C,' (X - X,) (3)

A, RHIZFERE Y, S SO R A s, Cy
WL 22 A B J5 2% , €, SRR BRI 2400 X, D)
ZEFEIE X, R B AP B S8 X — S e Al
T, BOULIN A df SRS 3 1 S - 241, % 2 o)
T HY 69 AR NN BB S BN e g o A o AR
Hr ek % (3) Hy P &R 2348 8, — FR 23 2 BUE 0L 1R
22, 93— 3 F2 7 1) WL 0 56 56 H AR B T 1] 4540
BRI S o 76 AN RE 515 21 UL 15 22 B Jr 22 36 B 1)
TEOLT 82k 7 WL 3T A b — A 0, DA 0
D5 BAE S A R rh 7 (9 L A eR AT DA ek S
H(Li % ,2001):

Cost(X) =n(A,.X - Y,) (A, X -Y,)

+(X - X)'AlL,, A, (X - X,) (4)
Hofe/h —Fefift (e 55 ,2003):
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. [nA,, ny s
X= (Al A, +C) [ ] [

K, A R E 5y R BB S5y 2256 15 C, 1%
FIEAELZEL PR %8 A R A A L A AR 7] 2, €, = EXA X
E" ) FF 5650 J R 0w ri A0 75 2 A0 1) 2
B Y B0 Y, = AL XX T A, AT XE" 3R
TS BCAIE L J7 [) WA R L e TEASHETE RN
HI-1 CCD %idli,n e 5 {5 B L, n 8NN, a5 iR
FESE BT o R R e, v 4 R R, (H
A I T e B MR A S, n RO, ORI R T o 1Y
AR, SO A R O T AR E . RAETE— 1>
S AR, P A V- 0 6 R 5 O B A R, i A5
SEARE , [R] kS 0L 25040 i 60 7% 15 B e KRR B
M B B RO S8 0 T BB B (s
B, 28N 3055 (L %5 ,2001) 8 B T — 2 50 f) 3
FAAEAE , AL E 48 545 2 0 B R =S i i
FAE R FHAE, AR 5 1RO A rh e BC— A O, 1
FEANTR A SE B0 A5 B B, ) BE S 45 SR 5 S Y 25
S, ZWEE LRI, 4 B — BRI,
3/4 S HR AR B HL, X6 T Ml 2 I RE 9% 45 H AR e L
NHe b R B S RN S5 R . FEARDF R, AT
HR A R AR T A R e 305 B b, i@ HI-1 A
F1 MODIS H [ K28 [ BRI L R B, 2 n A2 4k 1
B, 25 HI-1 DRSS IEB A RS IEEL 0.02
AR, 2 n=9 B, 35 I R A IR RS i

F2 BEDERSHERSH
2T B LT AN B
S S Srco fia S oo
SEHE | 0. 1064 | 0.0508 | 0.0159 | 0.2892 | 0. 1721
FR#E3= | 0.0108 | 0.0028 | 0.0006 | 0.0091 | 0. 0054
B2 | 0.00935 0. 00137 0. 00155

HE[E | 0.00137 0.00170 0. 00034
Cp 0. 00155 0. 00034 0. 00045

0. 0295

0.0012

0.00773 0. 00014 0. 00160
0. 00014 0. 00959 —0. 00235
0.00160 —0. 00235 0. 00145

P 2 25 H T TR g P 2P 6 1 2 S IR R
LB, O T TS B2 URHIE, iR T
T OHI-1 TR S 5 A I b 2 A IS A e S B
R MODIS Jz B % T3 T R WA B R S5k
T MR B IR R B A TS ) [ %8 (Liang 4F,
2001),MODIS J f# Z8 0] DAAR 4 H ™ 3k A% . % &
Hh B AH AR AL I RRAE , FRATTIE BT 5% X AS 5] B AH 1)
HI-1 CCD H¥ sz 3 Hh 4 [ B3R BIFE DX s A ARAIE BT
LA 3k MODIS Hi W) 157 il (MCD12Q2) 3R 1% o %
WFSE X (3 R A B 48 B EVD I GE 45 5 iR, BFY

X b AT A B 8 e A A A8 4k, 4 H R A BT
WREZEIE AR, 8] 7 H AR B0k A B,
EVI A 20E(H,8 H T RIVEM MOt E s . 16
4 I, JE B 13 K 2 /b HORE UL
HI-1 CCD g 0E4 T Hh 35 s HR 2% S 3, I X6 A 4y i
(25 R AEAT X LA HT o

2 ST AU B4 2 T 0 kT e
3 AR50

ShTIRHIE 2V 45 B RS R, X A B AR B Y
HI-1 DA MR I R AT T 9P B ek Ak |
FNGETE 145 30 i FL S b 3% [ B2 5 MODIS 7™ i i
1T EABOR N H SR, 1A [ 3 6 28 70 A B4
722, 315 MODIS 7 s 7EGe it i b b4 xf
FRIXTR 2% s o5 Bad 3 R AR vL A 3 A 45 5 40 )
1 MODIS J HR 7= fiy K 2 BHS0 5 il 3 3 1) b 38
NI A HEAT T OB, T Hb R0 s D K
HIJ-1 CCD i /& K25 A C AU G, A T
b2 00 DU B R AT L, FRATT IR T KA R,
W R RS I AR A =X (2) e 4t it 26 5 s R
B R A R , B 2B Ak R e 2 YO0 00 50 91
BV BRI 1) 2 00 S IR R AT EL R, SR T R T BR U
T HERZE TS R . T b 73 AU
AN 2L R 2T A WA 5 B Uil , B HI-1 CCD 4%
5 AVHRR 113 By BB AR AL, 76 75 i B 39 98 Uk B
i E P 3% T AVHRR 19 5% e 2 0 (Liang
4 2003),
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3.1 EEEEES5EH [ 5 45 3] g B T X 5% Ik S MR R0 A
FE AR B T A [R) 3515 2 BT 7% DXt 6 J B R
Bl 3 45 T 2009- 08- 4GB A K HERERT A S5 SR IR LA B 43 DX 38 14 485 R ke R e /s L, Wi T A

3 3 FpE kB 2009- 08- 14 HFSY X 32 7 8R40 A [
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F i, MODIS [ BRI, 2R E 2
TRA R IT AN Hh 22 B s BRR ) 25 6 R B PR D
FETF I M LIS B 0 HI-1 TR Hb 3 s IR R
MODIS = fi—4f , #REAE &AL H I =2 25 W] 43
AVRAE , (AL T 5B R A R 200 HI-1 TR HL
R AR P LT 22 (1) b SR AR S5 44, EL AR &5
SRE R aIE 43 AT LU B A28 Wi, 221 ik ] LA
B X Y | AR R Hb A 1 S A B A B ) R I
1o AHREH TR T ZE7E—1 500 m ) MODIS R
JEE I [F) — Se 3o e 1, s SR b 2 iy B 36 s B
G, X2 ) 7 b 28 A8 3% DX 3k (2H 1) 5 Ak ) 3R R A
R A LR, R A B Y b 3R S R R 2
RMF G BRI

B4 g5 T8 1Ak U505 A MODIS
I BRI B RIS 9 25 (R 25 2, A4 Y IEAHD
U RN SR A R 22 5 W A SR IR AE 4 - U
AR AS [ b 2 28 R G 1 45 R A MODIS Jz iR
HATELES . F1 MODIS AH Fb, 5 T 5 56 0 1R 1) 1 5=
J52 R 3R A5 1l % A B T B A A TR R R ) M A
F L 302 IR 25 0F T i R IR 5 MODIS J R (1)
LN IRZEL R 0. 03, AHXT TR ZE LR 13% , 1M P Ff I
FHEIR A e i B 45 S FN MODIS J BER 7™ iy
BT, 45X H R 22 2 0 0. 01, MIXFR ZE 2N 4%
XA TR0 SRR R A, R b 3R S TR A AR A

S MR 2 TE 2% —8% o 3 ARG 1 i 3
ARG T FR ST B RE G, AT R i T 3% BRDF
(2 PN A8 Ak F1 28 0] A8 6 1 22 5 R B &2 (Jiao 5%,
2011), KL, @, — 5T BRDF 281k 251K &,
FIRETE A ) T BRDF 1E Jy b 35 56 3 0 1 0% i A
RS I FN PN i R A A i VR R AR AN R 72
JEE T A A 18 A5 Ak, A e e 1 2 T
YEFBT 5 T O 2, i i, 4 H4 HY
MODIS WX IRZE AN 7% , 1 8 H 14 H X iR
ZEAE1% X B S EA KSR R B W
AL 25 1) S P S A o
HARFEENE, TR X NEERE S
[R5 e, 23X 0 43 b 2 2 0 114 J BER R T = A —
IR . SRk T b B AR 2 A [R] B AR A9 28 3615 B R
JCXHZTC I T, fHFE —1~ MODIS 47t T i i [7]
— SR I I 38 A 08 I S Al R R S5 59 ) BRDF T AR
AL E, SERLXE UL %5 4 ) BRDF % 1E , 78 5045 25 6]
W JEE Y BRDF TR FNECHE R 22 400 4, o ol il
BAEIR2E 100% 15156 8 [ BRI X PR
I0, % A 54 o 7 4 ) 1 b 35 9 36 A, i
JEIAE BB EL R R AT JE B0 IR AR 45 S v T 5 9 HL
T3 v IR TR AR R 4 R P KR 2 AL 3 R
At LA b ER RSN HT e BR, B b e S 5 R
) S IR ARk B F HI-1 CCD B £ 1 i 5

B4 4 NIAH 4 Fidtsd i Fe 2 |3 Fpdaivk K MODIS J 3 52 BRI M E IR B FIARUE 22 (R 2548, (45 ) TE H)
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FAFT A XS T b 3R A M 1) 1 i L1, B
SRPE R T b S R 1) B TEORG B, (EURS BE (9 B 7
BRI XA R, TR, DA
2 1 0 ZERFFEIX N Y 4 Filr L 700 34b 28 o 43 S B AL
PEM—AMETC, 2] T 4 A ASTRI B A 7E 200 B R 4
[ 555 BRDF JEAR (B MODIS BRDF JEAR), DL K%
Vi HJ-1 CCD TEAH [FIHAH T 7518 JuAb 1 5 £ 2 0L
DN 25 (] 8 A S S 3B 5 b i) R, AR S
PR R B (2 DX ) T LA K BT i A B T 7E 1 Az
B WTUAE Bl A I AE A A8 A, XA R K BH
PrEIEANE E , R — 223l , T BOW M A7 & %

TE5EH: BRDF JR (9 S5z 5 30 45 w4 o B A AR Y

I, S 9 Ay, BAR, LKA U
TEARER AR 25 A1 ) B B ARG 4% 48 K T6
7 T BRI, 2 W B8 oo b R (AR I IR, A
Rz B HE RS2 WL Tw] S A58 R 40 (AT DA H 2 WL 1)
SR PIE), I, 4 F HI-1 CCD 14 & #s 1M & , K
BHFULIN AR XS 57 B, AT e 2 b 32 AR B 45 1
(1) 1t 3% 2 BE E3R AT — A A R T00J ) 19— A 4%
KBS HRAE, T3 3L T AR T ok M4
AHBRo

5 LY EL 4 Rl 2RI R R B AH Y MODIS BRDF /R 72 A
(BRDF JEAR RIS AR BRIE 2GSt o0 R R TOU T 1w, i 300 o 180 BB 8 3 s SR T A 1) /N WA AR SR T S AR R RN R AR b A
TE AR T X4 LI B RS ) o 2 AR 2E HI-1 BRI (o &, [R) it 1 R T BB RN

MIE5 Hrigal DI, #17 BRDF JEARTEA [F]
W FRITIRUA R I AH A AR BOR 22 50 AR E,
TE 4 7 AEBEAL T IR, M3 i) S ARR ML A S
SO, R 4 H 43 BT A RS 5 i) BRDF JE AR

B I R ICRT ARG TT ) R B — A
(M BCTIEAE  BEE ARG AL, 76 5 A iy, R RS
HuIT U6 %, {EL F 3R] A8 v AR % A, PRI T 3t 0
o3 2 LA SRR SO O L TS AR O R TIUIR ™, (AR
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HuAIRE L BRDF AR A& A T AN [A) R B2 A2 4k, IH 46
EBUANFIFREE 9 BAR T, AP AE B A 2 1) BRDF Dt
B, BT 8 A, bR T #R#AN, HoAE R ) BRDF
TEAREBLH A [ R BE R “ wIRk ™, 9 A 43, B 1 Hi
5b,BRDF FUFEARFEATN 4 A 3 PR35 —2, KW %
FBE T BRDF JEAR S8 M — 58 B i W e i, 1
AR R, R ) BRDF JEARFEA R
FEAAE . FEILLINI BB A A 224

3.2 Hus R HE R IR IE

o SRR T 7 vt AR e, 2 S DA A L, A A
JERTIR ) BB — A, M S I UM R A A — o R
JE 1AM T SR O, i s T VA A T A B J%
RUBE b b A7 Mt UL B E X2l B 3 R4
Sl SE T H IR A TR AR T 0% B R DX P, UL R A
2451 H 100°25'E,38°51'N, 4K 5 N 1519 m,
T ETARS 35—, LI R B R, S iR S
THZESORG R, AT LK b 1D O8I0 58 55 T AL UL 54
FEAS TR RUBE T 50 & i b4 (Liang 55, 2003)
A FPATE R 1 45 SR DL S MODIS 7= i 5 L 6 U
DECHRHEA T O AL, 8] 6 25 1 T & S i [l ¥ 41 )
J S HR R 5 b R I i Ee A s R, T LR R
WA W W 5 e, 2 R R, 7E
B R IR /N 51 50 R 2 e R
& Jx MODIS 7= iy Fll W A AR 4 1) — 85tk . X
TR TRl 2 5000 1 4 % 152 22, B 181 KA
265 RAMERLE 0. 02—0. 05, F- 2126 %) 22 54 0. 032,
TG JE S R RORG B oK s Bk TV BR03% TIHRD MODIS 7™
TSI S K 4 KN 8 KA A ER -y
#a%F 7554 0.032.,0. 057 F10. 042, [R]INHA A LLE
! MODIS Jz #8248 {6 1 Z= 45 ¥ AS B 1 (Schaaf,
2002), 3% A] GEJ& H1 T MODIS I8 &% e A5 .

0.4

MRV« FEET #SETT e 5L« MODIS

A

- LI

3 ;/n\;\' taox .
> 0.2 L A x &

= *~i—1\/\!\;43_ f//ﬁ
25 e

0.1

0 54 105 125 154 164 168 181 204 226 238 257 265 277
Hit il /d
El6  IHEJFHIA HI-1 CCD it B 2 BHI Gk
ANV I T R S AR A SR S
I B LI i o L

7 45 TR [RGB I T,
k1 B K MODIS 77 5 5 Hi 22 L %5 4 11
K05 AR 22 43 51 4 0. 043 ,0. 046 F1 0. 048, A X%
FETE 20% 2o Ay, BT A BOE 19582 T 5 b 0L
BRI T RARZE A 0. 069, FHRTR2E 5555 36. 3% .
UEERE A R S IR R0 e 1 45 1) S

Bkl B ) MODIS = fhTE R 25T
TR b 2 O ) 2 TR A ol — B, (H A I A B S Y 22
S, 18 K RIS Y JEL R AT RS2« (1)BRDF A RUEERK
M (Jin 5,2003), B35 1 i | MODIS 7= i #) BRDF
FEARANE g 56 131, T MODIS HL 23 3% 25 1 1 26 W0
IECHR A7 AE BN B8 W ROBE RN . 3378 T X 4236
R A B 430 5 DX FH T A B 114 b 2 X000 1 g
(R 565 1R, 3 S 00 K 22 B0k IR T [A] — Bsf A R
DU, R I8 25 R S 56 0 TR B A 22 570 (2) HI-1
CCD %l pa i sz, 53 1 %652 i BRDF JEAR
F1 HI-1 CCD #ls A &4 5 1 poxhil o S e s
S ELSR IR Y S 5045 BRI £ 1878 45 R P BT o 1
L 33 B 35 A B MR B 0 22, X O D0 5 A 1 Jot

K7 BRI A FAE R P RS S
b 0 e B LI %) LU RIS

4 ghighitie

BT Se 0 R AT DU Ay ok s b 3R S R 58 R i
FERE AR SCE 3 0 HI-1 CCD %03 X B 9] 52 56 [X.
AT T 3 FPAR ) R R 38 B RN B A AT, X B8R
PG T MODIS k5 fb A& Ak 1) i F
DU s B %) oz B e i it B 1 (R T ) FBE T M 3k
BAMAMBRE 2514 B0 HI-1 CCD S5 R B AR
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FRIEGE L), IR 457545 & MODIS 7~
i 5 3 UL T K 5 AT e R e A, 15
TR LS 458

()PP EF S 56 0 A5 21 19 5 40 HE R 1 HI-1
CCD M3 [ PR BR PR AL TS 2T 32 22 (9 23 [a] 43 A ¢
eSO RESR Bt b AN RS540, (H R THEE [ 1E
—/~ 500 m MODIS 1% ¢ F fii il [i]— BRDF JEARAE
MR IEE R S DR S, XA
M) 7 b 205 TR e AR DX R B0 O B 3 . AH EL A
A ST o

Q)TE R 22 A B E s i = R BT, 51 A
M A5 ) SR 0 S 50 L, AT DA A5k 5 i e S R
SN i A NI B S U O i I
MODIS J i AH Lt , 25T B B 1) b 5 e B3R A5
MIAEXTIRZEH 0. 03, AHXT IR 250 13% 5 1 3 T 5 0w
PR P A5 R AR 15R 258 0. 01, AHRT IR 224 4% o

@)X HI-1 CCD i &, Bk T Gk 1A Xt
F MODIS JiZ 37 S AR e 113 X % s 2 )
R SOk FEARARL, B 1 5530k 1 0 b = )
BARA 8 3R 22 /8T 0. 05, FIXF IR 22 /N F 23% ;
ML IR 20 0. 069 , FIXHEZE K 36. 3% , X 5
Kimes(1985)(1) - 1 45 R85 452 30 . 0 B A) S 55 X
WA T IETE YT, MODIS 7= iRz, Ak
&%, Bk 1 3@ ok 46 [ A MODIS #1423 3% % fiy
BRDF JEARAE A S m M, A5 ST MG T v L 5
JEZ RE 52w 88 2 . 3 T pod 43 A i AL
T FH A I A b 2 U 00 5090 1 Sy S 30 A S S 5
B R R T SR I R AR B S T 7 Y LR e
F XA

@) R BT s HE 23R 114 B3, %o b R 2 A R 4R
WA AR ZEE T T 2% —8% . fEARFRSE
AR T B R ) AR A, R R Y A B Y R,
Vi A S 5 O 1 2, 3 T g S R g e A K AR
FEI R AN 25 ) S R AT O

()X T BAS WL £ B, MODIS £ FH 3 ik 9 &=
TR AT AL T XG0 A BRDF FEAR i« A 3
PRI 17T 52 B ORI Py a5 25 52 e K, ARk A 2 APk
NI 1 0, I Z Sk T RE S A AL, BT, X
FiUE AR E1E MODIS 55 5 R LAJG 1 52 R 0lk 55 1k &
A DHBR

DA P T S 05 TR A e IR R S i AR, T
RE S UM T % IR () A5 07 2L IX Sl 7 5 DA B b 3R
FAUFIIIAH o 3K PRy, AN [ 2 1 15 T X &
TR A S AR I) T LART £ E AT A7, PRI I 5 i) 381 56 2

% BRDF J2AR B RIHE 5 11y DX Sz B A Ak A AR 1 22 3
Wi R BH AR 5 A1, AS ] i 2% 26 L /% BRDF JE IR A2
A Rt — 29T, PRI, DL [ 3 X 9 B 58 X
Il , AR AN ] — > T BRDF JEAR I 73 2516 R,
T Ny TR 3 25 R BRDF 5650 AU, A 4K
HuFI ] BRDF Sl iR, e A 14 5 TARRIEE A

O AT Nt AAER A AFR T K IF
R FHI L % A F AR )T 69 A 81, CCD
EAERAE O R IAF R TR TSR P48 K2R
HEIHFREABEHBFRARTERORAR T AL E
REOPEGIRARIEL AR FHBEF S, EHET

s B
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