SCIENCE CHINA ) CrossMark
Earth SClenceS &click for updates

*RESEARCH PAPER"* April 2019 Vol.62 No.4: 703-718
https://doi.org/10.1007/s11430-018-9308-9

Evaluation of the SMOS and SMAP soil moisture products under
different vegetation types against two sparse in situ networks over
arid mountainous watersheds, Northwest China

Lanhui ZHANG', Chansheng HE'”', Mingmin ZHANG' & Yi ZHU'

! Key Laboratory of West China's Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou
University, Lanzhou 730000, China;
2 Department of Geography, Western Michigan University, Kalamazoo, Michigan 49008, USA

Received May 31, 2018; revised October 8, 2018; accepted November 23, 2018; published online February 12, 2019

Abstract  Assessment of the suitability of satellite soil moisture products at large scales is urgently needed for numerous
climatic and hydrological researches, particularly in arid mountainous watersheds where soil moisture plays a key role in land-
atmosphere exchanges. This study presents evaluation of the SMOS (L2) and SMAP (L2 P_E and L2 P) products against
ground-based observations from the Upstream of the Heihe River Watershed in situ Soil Moisture Network (UHRWSMN) and
the Ecological and Hydrological Wireless Sensor Network (EHWSN) over arid high mountainous watersheds, Northwest China.
Results show that all the three products are reliable in catching the temporal trend of the in situ observations at both point and
watershed scales in the study area. Due to the uncertainty in brightness temperature and the underestimation of effective
temperature, the SMOS L2 product and both the SMAP L2 products show “dry bias” in the high, cold mountainous area. Because
of the more accurate brightness temperature observations viewing at a constant angle and more suitable estimations of single
scattering albedo and optical depth, both the SMAP L2 products performed significantly better than the SMOS product.
Moreover, comparing with station density of in situ network, station representation is much more important in the evaluation of
the satellite soil moisture products. Based on our analysis, we propose the following suggestions for improvement of the SMOS
and SMAP product suitability in the mountainous areas: further optimization of effective temperature; revision of the retrieval
algorithm of the SMOS mission to reduce the topographic impacts; and, careful selection of in sifu observation stations for better
representation of in situ network in future evaluations. All these improvements would lead to better applicability of the SMOS
and SMAP products for soil moisture estimation to the high elevation and topographically complex mountainous areas in arid
regions.
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1. Introduction Long-term observations of soil moisture over large areas are
critical to numerous climatic and hydrological researches

Soil moisture strongly influences the energy and water cycle and applications, such as model simulations (Frye and Mote,

in land surface (Koster et al., 2004, 2010; Vereecken et al., 2010a, 2010b; Han et al., 2014; Ridler et al., 2014), critical
2014; Brooks et al., 2015; Taylor, 2015; Yang et al., 2018). zone hydrology processes (Richter and Mobley, 2009), land-

surface interactions (Koster et al., 2004, 2010; Yang et al.,
* Corresponding author (email: He@wmich.edu) 2018), etc. Recently, satellite products of soil moisture have
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become effective ways to provide surface soil moisture data
over large scales. The L-band products are most advanta-
geous because of their strong penetration ability to both soil
and vegetation, especially in arid areas where soil moisture is
a key factor influencing land-atmosphere exchanges (Kerr et
al., 2001; Entekhabi et al., 2010; Zhang et al., 2017a).

Two latest L-band products, Soil Moisture and Ocean
Salinity (SMOS) from European Space Agency (ESA), and
Soil Moisture Active/Passive (SMAP) from the United
States National Aeronautics and Space Administration
(NASA), are the most promising satellite soil moisture
products (Kerr et al., 2001; Entekhabi et al., 2010). As re-
trieval based on indirect measurements of satellite products
leads to uncertainty, a large number of researches have fo-
cused on the evaluation or validation of the satellite soil
moisture products. In recent years, the SMOS product has
been validated at both global scale (Leroux et al., 2013; Kerr
et al., 2016), and regional scale such as the Soil Climate
Analysis Network (SCAN)/SNOwpack TELemetry (SNO-
TEL) network over the continental U.S. (Al Bitar et al.,
2012; Jackson et al., 2012), Soil Moisture Observing Sys-
tem-Meteorological Automatic Network Integrated Appli-
cation (SMOSMANIA) in southwestern France (Parrens et
al., 2012), Maqu in China and Twente in the Netherland
(Dente et al., 2012), the central Tibetan Plateau in China
(Zhao et al., 2014; Li et al., 2018), Duero Basin in Spain
(Gonzalez-Zamora et al., 2015), Saskatchewan in Canada
(Djamai et al., 2015), and Iberian Peninsula in southwest
Europe (Polcher et al., 2016), etc. In contrast, as the latest
mission with a short operation period, the SMAP products
have mainly been evaluated at the Core Validation Sites
(CVS) (Vreugdenhil et al., 2013; Reichle et al., 2014; O'Neill
etal.,2016; Pan et al., 2016; Al-Yaari et al., 2017; Colliander
et al., 2017a, 2017b; Ma et al., 2017), with only a few re-
searches being conducted over other regions (Zhang et al.,
2017a; Li et al., 2018).

In mountainous areas, the brightness temperature simula-
tions are significantly affected by the surrounding reflection,
and it is difficult to solely derive the viewing angles of in-
cidence from the radiometer observation angle in the target
area (Pellarin et al., 2016), which makes the retrieval of soil
moisture much more difficult and uncertain. Due to the
constraints of both accessibility and data availability, little
has been reported on the evaluation of the SMOS and SMAP
products in mountainous areas (Kang et al., 2017). To our
knowledge, only three researches have compared the per-
formance of the SMOS and SMAP products in five CVS and
SCAN, Genhe area of Northern China, and a forested area of
Northeast China, respectively, none is in high mountainous
area (Chen et al., 2017; Cui et al., 2017; Jin et al., 2017).

Therefore, this study aims to evaluate and compare the
reliability of the SMOS and SMAP products in the upstream
of the Heihe River Watershed, Northwest China. First, we
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evaluate the SMOS and SMAP products against two sparse
in situ networks, the Upstream of the Heihe River Watershed
in situ Soil Moisture Network (UHRWSMN) and the Eco-
logical and Hydrological Wireless Sensor Network
(EHWSN). Subsequently, based on the evaluation results, we
analyze the suitability of both the SMOS and SMAP pro-
ducts in high mountainous area. Finally, we propose future
improvements to both SMOS and SMAP products for esti-
mation of the soil moisture over the high elevation, moun-
tainous areas.

2. Data and methods

2.1 In situ measurements

The upstream of the Heihe River Watershed is located in the
Qilian Mountain ranges (Figure 1). The length is 313 km and
the drainage area is approximately 10009 km’. With complex
terrain surface, the range of the elevation in the upstream is
from 1674 to 5584 m asl (meter above sea level) (Li et al.,
2009; Zhang et al., 2017b), and the major vegetation types
include coniferous forest, shrub, steppe, alpine meadow, al-
pine sparse vegetation, and barren land (Gao et al., 2016).
With an area of 2495 kmz, the Babaohe River Watershed is
the eastern branch of the upstream of the Heihe River Wa-
tershed (Figure 1). The elevation ranges from 2629 to
4897 m asl with an average value of 3604 m asl. Grassland is
the most dominant land-cover types, accounting for 43.94%
of the Babaohe River Watershed (Lei et al., 2014).

Due to its high elevation, and complex topography, it is
difficult to obtain soil moisture data at watershed scale in the
upstream of the Heihe River Watershed (Kang et al., 2017).
In the study area, there are limited in situ observations only
available from the two sparse networks, the UHRWSMN
over the upstream of the Heihe River Watershed and the
EHWSN over the Babaohe River Watershed. Sparse network
measurements are important auxiliary resources for the va-
lidation of satellite soil moisture products over large scales
(Chen et al., 2017; Colliander et al., 2017a). In this study, all
the in situ observations from two sparse networks are used to
evaluate both the SMOS and SMAP products.

The UHRWSMN was established in June 2013 by authors’
team. It includes 35 nodes, installed on the main soil-vege-
tation combinations in the study area (Figure 1; Table 1). Soil
moisture has been measured at depths of 5, 15, 25, 40 and
60 cm with 30-minute intervals by Decagon’s 5TE for each
node. In this study, the data at 5 cm depths were used as the
surface data for evaluation. As part of the Hiwater (Heihe
Watershed Allied Telemetry Experimental Research) project
(Lietal., 2013), the EHWSN was established in July 2013 in
the Babaohe River Watershed (Kang et al., 2017). It includes
40 nodes, which were all installed on grassland at an average
distance of 10 km and at an average altitude of 3581 m asl
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The Babaohe Rlver Watershed

Figure 1 The study area.
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Table 1 The UHRWSMN over the upper reach of the Heihe River Watershed
Station Logitude Latitude  Altitude (m asl) Vegetation Sand (%)  Silt (%)  Clay (%) Soil types

D1 99.758°E 38.910°N 2151 Sparse grassland 33.890 58.970 7.140 Typical Sierozems
D2 99.520°E 38.781°N 2556 Sparse grassland 32.330 60.020 7.650 Light Castanozems
D3 99.988°E 38.955°N 1827 Sparse grassland 38.030 55.880 6.090 Clay gray desert soils
D4 100.013°E  38.455°N 2370 Sparse grassland 27.819 65.997 6.184 Typical Castanozems
D5 101.350°E  38.095°N 2558 Dense grassland 57.845 37.866 4.289 Light Castanozems
D6 99.186°E 39.146°N 2604 Sparse grassland 25.207 66.891 7.902 Light Castanozems
D7 98.329°E 38.899°N 3317 Sparse grassland 22.072 69.032 8.896 Calcareous Frigid frozen soils
D8 98.805°E 39.323°N 2170 Sparse grassland 20.128 72.581 7.291 Saturated Frigid frozen felt soils
D9 99.232°E 38.724°N 3622 Dense grassland 34.464 58.182 7.354 Saturated Frigid frozen felt soils
D10 97.824°E 39.338°N 3117 Sparse grassland 9.774 82.888 7.337 Calcareous Frigid frozen soils
DIl 100.220°E  38.560°N 2890 Coniferous forest 11.134 81.961 6.905 Typical Castanozems
D12 99.711°E 38.789°N 2498 Coniferous forest 19.863 73.599 6.538 Typical Grey-cinnamon soils
D13 101.048°E  38.189°N 2977 Shrub 13.816 78.380 7.804 Peat Frigid felt soils
D14 100.418°E  38.480°N 2676 Coniferous forest 44.335 50.187 5.478 Light Castanozems
D15 101.050°E  38.160°N 3146 Shrub 9.022 83.357 7.621 Peat Frigid felt soils
Dl6 100.616°E  38.031°N 3105 Dense grassland 28.634 65.963 5.403 Saturated Frigid frozen felt soils
D17 100.929°E  38.065°N 3300 Sparse grassland 25.191 67.730 7.079 Typical Chernozems
D18 101.378°E  38.125°N 2787 Dense grassland 27.410 65.161 7.429 Dry farming Chernozems
D19 100.908°E  38.274°N 2697 Cropland 14.628 78.103 7.268 Typical Castanozems
D20 99.670°E 39.119°N 2147 Barren land 20.753 71.602 7.644 Calcareous Frigid calcic soils
D21 97.866°E 39.633°N 2770 Sparse grassland 25.212 68.056 6.732 Calcareous Frigid calcic soils
D22 97.971°E 39.535°N 2303 Sparse grassland 27.226 66.467 6.307 Saturated Frigid frozen felt soils
D23 98.351°E 39.472°N 2390 Sparse grassland 41.253 53.508 5.239 Typical Frigid frozen calcic soils
D24 98.756°E 38.788°N 4109 Barren land 41.699 52.654 5.648 Typical Frigid desert soils
D25 99.475°E 38.611°N 4155 Barren land 54.860 40.260 4.880 Saturated Frigid frozen felt soils
D26 100.237°E  38.184°N 3252 Sparse grassland 29.832 61.556 8.612 Typical Castanozems
D27 100.147°E  38.585°N 2465 Dense grassland 8.744 81.255 10.002 Light Castanozems
D28 101.269°E  38.299°N 2601 Dense grassland 14.337 73.138 12.524 Typical Castanozems
D29 99.623°E 38.409°N 3249 Dense grassland 22.241 69.842 7.917 Peat Frigid felt soils
D30 101.050°E  38.165°N 3109 Dense grassland 20.356 73.725 5.920 Saturated Frigid frozen felt soils
D31 99.969°E 38.241°N 2920 Dense grassland 24.748 69.119 6.133 Saturated Frigid frozen felt soils
D32 99.485°E 38.592°N 3800 Alpine meadow 26.737 63.807 9.455 Typical Gray calcic soils
D33 100.286°E  38.554°N 2698 Dense grassland 19.860 73.600 6.540 Typical Castanozems
D34 100.937°E  38.215°N 2886 Dense grassland 9.480 84.390 6.130 Typical Chernozems
D35 99.915°E 38.833°N 2839 Dense grassland 27.930 67.160 4910 Typical Castanozems

(Figure 1; Table 2). For each node, soil moisture has been
observed at depths of 4, 10 and 20 cm with 5-minute inter-
vals by soil moisture sensor (Steven’s Hydra) in the Babaohe
River Watershed. The data at 4 cm depths were used as the
surface data for evaluation in this study. Because of instru-
ment malfunctions, ground observations from only 25 of the
40 nodes were available in 2015 to evaluate both the SMOS
and SMAP products (Figure 1). The soil moisture data from
the EHWSN were downloaded from Environmental &
Ecological Science Data Center for West China, National
Natural Science Foundation of China (http://westdc.westgis.

ac.cn). As the UHRWSMN and EHWSN have been observed
on the main vegetation-soil combinations, both of them are
comparable with dense in situ networks (Kerr et al., 2016;
Zhang et al., 2017a).

2.2 Satellite products

The ESA’s SMOS mission was launched on November 2009,
aiming to provide surface soil moisture (usually the top
5 cm) data at a spatial resolution better than 50 km, with a
target accuracy of 0.04 m’ m > overland (Kerr et al., 2001).
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Table 2 The EHWSN in the Babaohe River Watershed

In situ points Logitude Latitude Altitude (m asl)
WSN-54 100.788°E 38.020°N 3484
WSN-11 101.000°E 37.908°N 3449
WSN-16 100.379°E 38.243°N 3766
WSN-31 100.440°E 38.149°N 3462
WSN-35 100.589°E 37.925°N 3767
WSN-18 100.282°E 38.093°N 3792
WSN-04 100.144°E 38.121°N 3458
WSN-01 100.228°E 38.068°N 3538
WSN-53 100.925°E 37.909°N 3526
WSN-12 100.333°E 37.994°N 3813
WSN-55 100.319°E 38.184°N 3045
WSN-27 100.564°E 38.067°N 3414
WSN-30 100.269°E 38.216°N 3091
WSN-40 100.234°E 38.048°N 3656
WSN-32 100.919°E 37.979°N 3580
WSN-52 100.606°E 37.971°N 3335
WSN-05 100.541°E 37.986°N 3356
WSN-02 100.282°E 38.258°N 3818
WSN-22 100.198°E 38.178°N 3050
WSN-37 101.074°E 37.923°N 3744
WSN-25 100.227°E 38.037°N 3846
WSN-06 100.671°E 37.908°N 3635
WSN-42 100.966°E 37.962°N 3515
WSN-33 100.985°E 37.871°N 3661
WSN-10 100.700°E 38.027°N 3478

The SMOS L2 v.6.2.0 soil moisture data from 1 April 2015
to 22 June 2017 were selected for this research. The data
affected by Radio Frequency Interferences (RFI) or with
Data Quality Index (DQX) greater than 0.06 were discarded.
In the study area, the SMOS L2 product is with a resolution
of about 15 km by 15 km, and the equal grids are known as
the Discrete Global Grid (DGG) (Gonzalez-Zamora et al.,
2015). The upstream of the Heihe River Watershed is cov-
ered by roughly 95 DGGs of the SMOS L2 product, while
the Babaohe River Watershed is covered by roughly 16
DGGs (Please see http://www.esa.int/Our_Activities/Ob-
serving the Earth/SMOS for detailed information).

The NASA’s SMAP mission, launched in 2015, was de-
signed to provide global mapping of surface soil moisture
(the top 5 cm) with ubRMSE (unbiased root-mean-square
errors) less than 0.04 m’ m " for the gridded products (36 and
9 km) within the retrieval domain (Entekhabi et al., 2010,
2014; O’Neill et al., 2016). Among the SMAP products at
four levels, the Level 2 (L2) products are geophysical re-
trievals (Entekhabi et al., 2014; Colliander et al., 2017a). The
SMAP L2 P product is the retrieval from brightness tem-
perature with a grid cell of 36 km by 36 km. Given that the

SMAP radar failed in July 2015, the SMAP L2 P_E product
with a resolution of 9 km by 9 km is the soil moisture re-
trieval from downloaded brightness temperature with origi-
nal resolution of 36 km by 36 km. Thus, both the SMAP
L2 P and the SMAP L2 P E from 1 April 2015 to 22 June
2017 over the study area were selected for validation in this
research. The upstream of the Heihe River Watershed is
covered by roughly 32 DGGs of the SMAP L2 product,
while the Babaohe River Watershed is covered by roughly 6
DGGs. As tothe SMAP L2 P_E product, the upstream of the
Heihe River Watershed is covered by roughly 337 DGGrs,
while the Babaohe River Watershed is covered by roughly 43
DGGs. Both the SMAP L2 P and L2 P E products are
distributed by NASA National Snow and Ice Data Center
Distributed Active Archive Center (NSIDC DAAC) and the
NASA Alaska Satellite Facility Distributed Active Archive
Center (ASF DAAC) (For the SMAP data and further details,
please visit http://nsidc.org/).

2.3 Evaluation methods

In order to compare with other evaluation results, four me-
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trics: correlation coefficient (R), root-mean-square errors
(RMSE), the mean bias (bias) and ubRMSE, were applied to
validate all the three products in this study (Brown et al.,
2013; Entekhabi et al., 2014; Al-Yaari et al., 2014; Wu et al.,
2016; Zhang et al., 2017a).

> (SMg—SM™)(SM;* ~SM™)

R = o > ot 52 (1)
\/Z;’:l(SM?bS—SMO ) JZ:’ZI(SM%“—S_MM)
3 (SMys - SM)’
RMSE = || & - , ()
bias=SM** — SM°", (3)
ubRMSE*=RMSE 2- bias?, (4)

where SM9™ is the in situ soil moisture on #th day, and SM3™
is the soil moisture of satellite products on zth day. SM°* and
SM** are the average values of SM¢" and SM:* during the

entire evaluation period, and # is the total number of days of
the evaluation period. R ranges in [—1, 1], the larger values
mean that the products better match the observation. RMSE
and bias can be any value, while ubRMSE are positive va-
lues, the smaller values of these three indices indicate that the
products fit the observations better.

2.4 Temporal stability analysis

The temporal stability analysis has also been conducted in
this study because it reflects the tempo-spatial distribution of
soil moisture with little dependence on the absolute values of
soil moisture and less influence of the sampling size (Ro6tzer
et al., 2014). For each grid x, the stability of soil moisture
estimates from one time step to another is evaluated by mean
relative difference (MRD) §x and standard deviation o(J,)
(Polcher et al., 2016; Zhang et al., 2017a).

5= 3 b ®)
t=1

o(6) = J FEDICHE ()

where 7 is the number of days during the evaluation period,
J,, is the relative difference of grid x at 7th day, and J, is the
average value of J,, of grid x during the evaluation period.

SMsa —SM; ™"
T, (7
t

xt

and SM:" is the areal mean value for all m grids at rth day
and calculated as eq. (8),

sa 1 - sal
SM™ = ZI SMS, (8)

and SM' is the soil moisture estimates of the SMOS product
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and both the SMAP products for grid x at 7th day. Generally,
drier (wetter) areas will get a low (high) MRD and with a low
(high) rank, and higher standard deviations of MRDs in-
dicate a lower persistence of soil moisture distribution over
time (Rotzer et al., 2014). The similarity of MRD ranks
measures the spatial distribution similarity of different pro-
ducts, while the standard deviations of MRD indicate the
persistence of soil moisture distribution over time, i.s. the
smaller the o(d,), the greater persistence of the soil moisture
distribution over time.

3. Results

3.1 Evaluation of the SMOS and SMAP products of
overpassing orbits

As the ascending and descending retrievals of both the
SMOS and SMAP products show different performance
(Entekhabi et al., 2014; Zhao et al., 2014), both ascending
and descending overpasses of each product were investigated
in this study. The SMOS and SMAP products of each
overpassing orbit were compared with the corresponding
observations from UHRWSMN (2015-04-01-2017-07-22)
over the upstream of the Heihe River Watershed, and from
EHWSN (2015-04-01-2015-12-31) over the Babaohe River
Watershed. As shown in Table 3, the R values are 0.367—
0.608, all passing significance test of 0.001, indicating that
all the three products of both the ascending and descending
orbits performed well in catching the trend of the observa-
tions. All the bias values are negative, thus the SMOS L2
product and both the SMAP L2 products showed “dry bias”
with underestimation of the soil moisture (Rotzer et al.,
2014; Zhang et al., 2017a). With the RMSE values ranging
from 0.063 t0 0.161 m’ m° and the ubRMSE values ranging
from 0.056 to 0.118 m’ m >, all being evaluated at the point
scale, all the three products did not achieve the target accu-
racy of 0.04 m’m .

Furthermore, as shown in Table 3, in both watersheds, both
the SMAP L2 products showed similar performance with
slightly smaller R values, smaller RMSE and ubRMSE va-
lues of the SMAP L2 P product, and both of them performed
notably better than the SMOS L2 product with significantly
larger R values, smaller RMSE and ubRMSE values.

3.2 Evaluation of the SMOS and SMAP Products at
the watershed scale

Due to its complex topography, accurate estimation of soil
moisture at the watershed scale in the study area is very
difficult in the Heihe River Watershed (Kang et al., 2017).
For fair comparison, the SMOS L2 product, the SMAP L2 P
and L2 P E products, and in situ observations were all
processed into daily areal average values in both watersheds
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Table 3 Evaluation of the SMOS and both SMAP products in the study area
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In \gé?kget- Product Overpassing moments R RMSE (m*m™>)  Bias (m’m™) ubRMSE (m’ m ™) n
The SMOS Asc 0.390 0.094 -0.020 0.091 1838
Product Des 0.519" 0.093 -0.027 0.090 3016
UHRWSMN Th% SMAP L2 P E Asc 0.554: 0.065 -0.033 0.056 7073
roduct (9 km) Des 0.607 0.063 -0.027 0.056 6397
The SMAP L2 P Asc 0.565 0.066 -0.030 0.059 6660
Product (36 km) Des 0.608" 0.064 —-0.023 0.060 5961
The SMOS Asc 0.367" 0.144 -0.092 0.111 497
Product Des 0.391" 0.161 -0.109 0.118 1016
The SMAPL2 P E Asc 0.442" 0.132 —0.103 0.083 1699

EHWSN Product (9 km) * _

Des 0.441 0.134 0.107 0.080 1526
The SMAP L2 P Asc 0.464" 0.139 -0.110 0.086 1638
Product (36 km) Des 0.450" 0.141 —0.115 0.082 1443

a) * Refers to passing significance test of 0.001. ASC refers to ascending, Des refers to descending.

at the watershed scale (Figure 2). For the SMOS L2, SMAP
L2 P and L2 P_E products, the R values are 0.584, 0.737
and 0.803 respectively in the upstream of the Heihe River
Watershed, while they are 0.597, 0.490 and 0.611 respec-
tively in the Babaohe River Watershed. It indicates that all
the three products performed very well in capturing soil
moisture dynamics in both watersheds. The ubRMSE values
are 0.050, 0.031 and 0.027 m> m > for the SMOS L2, SMAP
L2 P and L2 P _E products respectively in the upstream of
the Heihe River Watershed, while they are 0.062, 0.039 and
0.039m’m" respectively in the Babaohe River Watershed.
Thus at the watershed scale, the SMOS L2 product did not
achieve the target accuracy of 0.04 m’ m ", while both the
SMAP L2 products are far beyond the target accuracy in both
watersheds. All the three products also show “dry bias” at the
watershed scale with all negative bias values in both water-
sheds. It is worth mentioning that, all the SMOS L2, SMAP
L2 P and L2 P_E products lacked data in winter (from
December to March) in the study area (Figure 2).

Because of limited data availability, the ubRMSE values
are used as the main index to compare performance of all the
three products (Zhang et al., 2017a). In both watersheds, the
SMAP L2 P _E performed better than the L2 P product, and
both of them performed significantly better than the SMOS
L2 product.

3.3 Evaluation of the SMOS and SMAP Products un-
der different vegetation types

For L-band products, only less than 0.7% of the volumetric
error is caused by soil heterogeneity (Galantowicz et al.,
2000). As shown in Table 1, there is little difference in soil
textures of the in situ nodes in this study. Vegetation is the
most important factor influencing the retrieval accuracy of
satellite soil moisture products at both global and regional
scales (Galantowicz et al., 2000; Wigneron et al., 2012;

Leroux et al., 2013; Djamai et al., 2015). Thus, the SMOS
and both SMAP products have been compared with the time
series of in situ soil moisture under different vegetation types
(Table 4). In the upstream of the Heihe River Watershed, the
performance of both the SMAP L2 products shows a de-
clining order of cropland, coniferous forest, dense grassland
and sparse grassland, alpine meadow, and shrub. The SMOS
L2 product performed best under coniferous forest and
cropland, then sparse grassland, dense grassland, and finally
alpine meadow and shrub. Both the SMAP L2 P and
L2 P E products achieved the target accuracy of
0.04m’ m " for all the vegetation types except alpine mea-
dow and shrub, while the SMOS L2 product did not achieve
the target accuracy under all the vegetation types.

In the upstream of the Heihe River Watershed, both the
SMAP L2 P and L2 P E products showed significantly
better performance than the SMOS L2 product under all the
vegetation types. In the Babaohe River Watershed, as all the
in situ observation sites were on grassland, the better per-
formance of two SMAP L2 products indicates that both of
them performed better than the SMOS L2 product under the
grasslands (Table 4). Therefore, both the SMAP L2 products
performed significantly better than the SMOS L2 product
under all the vegetation types in both watersheds.

3.4 Performance comparison of the three products in
UHRWSMN and EHWSN

To assess the impacts of in sifu observation station density on
the validation of the SMOS and SMAP soil moisture pro-
ducts in the study area, all the three products were evaluated
against both UHRWSMN and EHWSN during the same
period from 2015-04-01 to 2015-12-31. As shown in Table 5,
although with slightly smaller R values of ascending over-
pass in UHRWSMN, the significantly smaller RMSE, ab-
solute bias, and ubRMSE values indicate that the SMOS
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Figure 2 Time series of daily areal average values of the SMOS, both the SMAP products and in sifu observations. (a) The upper reach of the Heihe River

Watershed; (b) the Babaohe River Watershed.

product performed better in UHRWSMN than EHWSN of
ascending overpass. For descending overpass, the SMOS
product also performed better in UHRWSMN than EHWSN
with larger R values, smaller RMSE, absolute bias, and
ubRMSE values. Similarly, with larger R values, smaller
RMSE, absolute bias, and ubRMSE values, both the SMAP
L2 P Eand L2 P products performed better in UHRWSMN
than EHWSN of both ascending and descending overpasses.
Thus, both the SMOS and SMAP product performed better
in UHRWSMN than EHWSN.

3.5 Temporal stability analysis

Because there were only few grids in the Babaohe River
Watershed, the MRDs and their standard deviations of the

SMOS L2 product and both the SMAP L2 products were
only compared in the upstream of the Heihe River Wa-
tershed. As shown in Figure 3, the MRDs are —0.514, —0.561
for the SMOS L2 product, —0.440, —0.999 for the SMAP
L2 P product, and —0.491, —0.856 for the SMAP L2 P E
product. The MRD trends of all the three products are smaller
in the northwest and larger in the southeast. It means that the
soil moisture estimates of the three products are all drier in the
northwest and wetter in the southeast of the study area.

The standard deviations of MRDs are 0.225-0.656 with a
areal mean value of 0.403 for the SMOS L2 products, and are
0.104, —0.351 with areal mean value of 0.203 for the SMAP
L2 P product, and 0.090 to 0.738 with areal mean value of
0.182 for the SMAP L2 P E product. For all the three
products, the standard deviations of MRDs are smaller in the
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Table 4 Evaluation of the SMOS and both SMAP products under different vegetation types over the upper reach of the Heihe River Watershed

Product Vegetation types R RMSE (m’ m ) Bias (m’ m ) ubRMSE (m’ m™) n
Alpine meadow 0.606" 0.107 —0.055 0.092 137
Sparse grassland 0.488" 0.075 0.008 0.070 1349
Dense grassland 0.448" 0.095 —0.031 0.081 1662
Tl;)iosdl\lfgs Shrub 0.499: 0.179 —0.156 0.089 275
Coniferous forest 0.463 0.072 —0.031 0.064 416
Cropland 0.543" 0.085 —0.049 0.069 137
Barren land 0.642" 0.101 0.016 0.082 237
Alpine meadow 0.751" 0.150 —0.140 0.052 184
Sparse grassland 0.598" 0.045 0.000 0.035 2261
Dense grassland 0.575" 0.054 —-0.023 0.034 2594
ot O 1o Shrub 0.163" 0.207 ~0.192 0.077 385
Coniferous forest 0.665" 0.051 —0.038 0.032 743
Cropland 0.728" 0.067 —0.062 0.026 238
Barren land 0.633" 0.068 —0.007 0.033 332
Alpine meadow 0.727" 0.140 —0.132 0.048 151
Sparse grassland 0.597" 0.047 0.006 0.036 2344
Dense grassland 0.584" 0.058 —0.023 0.034 2314
—;};stul::/{:?gélﬁﬁf Shrub 0.224: 0.188 —0.175 0.068 329
Coniferous forest 0.647 0.055 —0.044 0.032 684
Cropland 0.736" 0.042 —0.034 0.025 193
Barren land 0.664" 0.077 —0.003 0.030 298
a) * refers to passing significance test of 0.001. The indices are average values of both ascending and descending orbits for each product.
Table 5 Comparison of the SMOS and both SMAP products in UHRWSMN and EHWSN from 2015-04-01 to 2015-12-31"
In situ networks Product Overpassing moments R RMSE (m3 m73) Bias (m3 m73) ubRMSE (m3 m73) n
The SMOS Asc 0.348" 0.085 —0.027 0.080 781
Product Des 0.425" 0.086 —0.042 0.076 1409
UHRWSMN Th%rsoﬁéf(gi—rg)— E gsc 0.540: 0.061 —0.030 0.053 2845
es 0.582 0.060 —0.025 0.054 2504
The SMAP L2 P Asc 0.531" 0.063 —0.027 0.057 2768
Product (36 km) Des 0.579" 0.061 -0.021 0.057 2431
The SMOS Asc 0.367" 0.144 —0.092 0.111 497
Product Des 03917 0.161 -0.109 0.118 1016
EHWSN Th‘;rsolﬁf(gzk—rg)— E gsc 0.442: 0.132 —0.102 0.083 1699
es 0.441 0.134 —0.107 0.080 1523
The SMAP L2 P Asc 0.464" 0.139 —-0.110 0.086 1638
Product (36 km) Des 0.450" 0.141 ~0.115 0.082 1443

a) * refers to passing significance test of 0.001. ASC refers to ascending, Des refers to descending.

west and larger in the east, indicating that the soil moisture
distributions of all the three products showed lower persis-
tence over time in the east than in the west. The SMAP
L2 P _E product, with the finest resolution, presents more
details of the spatial distribution with smaller standard de-
viations of MRDs in the central areas and larger standard
deviations of MRDs in the outlying areas. It implies that the

soil moisture distributions of the SMAP L2 P E product
showed lower persistence over time in the outlying areas
than in the central areas. The standard deviations of the
SMAP L2 P show smallest range, then the SMOS L2 pro-
duct and the SMAP L2 P_E product. It suggests that the soil
moisture distributions of the SMAP L2 P product had the
greatest persistence over time, followed by the SMOS pro-
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Figure 3 Temporal stability analysis of the SMOS and both SMAP products in the upper reach of the Heihe River Watershed. (a) MRDs of the SMOS
product; (b) standard deviation of the SMOS product; (¢) MRDs of the SMAP L2 _P_E (9 km) product; (d) standard deviation of the SMAP L2 P_E (9 km)
product; (¢) MRDs of the SMAP L2 P (36 km) product; (f) standard deviation of the SMAP L2 P (36 km) product.

duct and the SMAP L2 P _E product (Figure 3).

4. Discussion

4.1 Impacts of errors in brightness temperature ob-
servations and effective temperature estimates

Both the SMOS and SMAP missions are based on the tau-

omega model to describe the effects of soil and vegetation on
the surface brightness temperature 7B, (Mo et al., 1982;
Panciera et al., 2009), which is shown as eq. (9).
TB,(0) = (1 —w,)(1~9,(0))

(1+0 (O, (O)T, +(1 =7 (O)p (T,

where 7, is the vegetation temperature, T is the soil effective
temperature, w, is the vegetation single scattering albedo,

&)
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¢,(0) is the vegetation attenuation factor, ,(6) is the soil
reflectivity. Both ¢,(0) and r,(0) generally vary with the
measurement polarization p (horizontal or vertical) and the
sensor observation angle 8. At L-band, the value of the single
scattering albedo w), is generally found to be low (Wigneron
et al., 2007), and show low sensitivity to polarization, in-
cidence angle (Owe et al., 2001).

To retrieve soil moisture, both missions isolate the soil
surface reflectivity 7,(0) as eq. (10) by inversion of the tau-
omega model:

TB,(0) — (1w, )0 ~p, (DT, + 9, ()T (10)
(1= ) (1=, (N, (DT, +p, (DT

Then, the emissivity e,(6) is related to the soil surface re-
flectivity by e,(6)=1-7,(6). The Fresnel equation is then used
to determine the dielectric constant from the soil emissivity.
Finally, a dielectric mixing model is used to solve for the soil
moisture given knowledge of the soil texture (Entekhabi et
al., 2014; O'Neill et al., 2015; Fernandez-Moran et al., 2017).
Thus, the errors of both SMOS and SMAP products are
caused by uncertainty in estimating 7B, T,, T, ¢,(0) and w,,.

In this study, the SMOS L2 product, as well as the SMAP
L2 P E and L2 P products, show the “dry bias” at both the
point scale and watershed scale in both watersheds. The “dry
bias” has also been reported in almost all the validations of
both products over mountainous regions (Jackson et al.,
2012; Gherboudj et al., 2012; Zhao et al., 2014; Chen et al.,
2017; Cui et al., 2017; Ma et al., 2017; Zhang et al., 2017a).
In this study, for the SMOS product, because all the in situ
instruments in EHWSN are installed on the grassland, the
performance differences under different vegetation types are
only analyzed in UHRWSMN. As shown in Table 4, the
SMOS product underestimates soil moisture under all the
vegetation types except sparse grassland. As shown in Table
6, the in situ observations show stronger variations under
driest conditions in sparse grassland, which leads to minor
overestimations under sparse grassland. Therefore, the “dry
bias” of the SMOS product is not influenced by different
vegetation types, indicating that vegetation parameters o,
and ¢,(6) in eq. (10) are not main reasons for the “dry bias”
of the SMOS product.

Both the SMOS and SMAP missions assume that effective
soil (T;) and vegetation (7,) temperatures are approximately
equal to a single value, effective temperature (7, ) (Kerr et
al., 2012b; Srivastava et al., 2013). Zhang et al. (2017a)
pointed out that the “dry bias” of the SMAP products was
attributed to the uncertainties in estimating the 7B, and T4 in
mountainous area. Since the aforementioned analysis in-
dicates that vegetation parameters are not the main reason for
the “dry bias” of the SMOS product, it is reasonable to infer
that the dry biases of both SMOS and SMAP products are
mainly caused by the uncertainties in estimating the bright-
ness temperature 7B, and effective temperature Ty in

r(0) =
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mountainous area.

In the study area, surface incidence angle of the SMOS
product ranges from 31.2° to 45.5°, and surface incidence
angle of the SMAP product is a constant of 40°, thus both
missions view the targeted landscape at large incidence an-
gles. As the errors of soil moisture retrievals are sensitive to
the errors of brightness temperature observations at large
incidence angles (Li et al., 2015), the errors in brightness
temperature observations would lead to errors in soil
moisture retrievals. In mountainous areas, angles of in-
cidence in the target area cannot be derived solely from the
radiometer observation angle, and the surrounding reflection
significantly affects brightness temperature simulation
(Pellarin et al., 2016). Nevertheless, both of them have been
ignored in both the SMOS and SMAP missions (Entekhabi et
al., 2014). Synthesizing these factors, it is logic to infer that
the errors in brightness temperature 7B, is an important
cause of the “dry bias”.

In both SMOS and SMAP missions, the algorithms to
derive soil moisture are very sensitive to the effective tem-
perature T,y (Zhao et al., 2015). If T, is cooler than the
actual temperature, according to eq. (10), it would result in
larger estimate of ,(0) and in turn smaller estimate of e,(6),
eventually leading to dry retrieval of soil moisture. In the
SMOS mission, 7. is estimated by the simulations of the
European Centre for Medium-Range Weather Forecasts
(ECMWF), but the ECMWF model shows “dry bias” in
estimating temperature in China (Ma et al., 2006). In the
SMAP mission, T4 is derived from the simulated soil tem-
perature by the Goddard Earth Observing Model System
Version 5 (GEOS-5) model (Chen et al., 2017). As shown in
Table 7, both the SMAP products significantly under-
estimated the surface temperatures in both watersheds. Chen
etal. (2017) also stated that the underestimation of 7, results
in the “dry bias” of the SMAP product in the Tibetan Plateau,
which is also a high, cold area close to our study area. Thus,
the underestimation of the effective temperature 7, is a main
reason for the “dry bias” of both the SMOS and SMAP in
mountainous area.

In summary, the “dry bias” of both the SMOS and SMAP
products is mainly caused by the uncertainty in brightness
temperature 7B, and the underestimation of effective tem-
perature T, in mountainous area. Such errors in both 7B,
and 7, would propagate through the soil moisture inversion
algorithm (Das et al., 2016), which is still unclear and re-
quires further investigations in the future.

4.2 TImpacts of topography and vegetation conditions

Both the SMAP L2 P and L2 P _E products performed
significantly better than the SMOS product at both the point
scale and watershed scale in both study watersheds. As
shown in Figure 2, most grids lack data from the SMOS L2
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Table 6 Statistics of in-situ observation under different vegetation types
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Statistics (m® m ) Alpine meadow  Sparse grassland  Dense grassland Shrub Coniferous forest Cropland Barren land
Minimum 0.018 0.002 0.052 0.177 0.048 0.137 0.026
Maximum 0.477 0.370 0.424 0.627 0.294 0.295 0.339

Average 0.295 0.112 0.174 0.355 0.145 0.204 0.151
Ccv 0.254 0.587 0.311 0.243 0.319 0.143 0.474
Stdev 0.075 0.066 0.054 0.086 0.046 0.029 0.072
Table 7 Evaluation of the surface temperature from both the SMAP productsa)
In situ networks Product Overpassing moments R RMSE (°C) Bias (°C) ubRMSE (°C) n
Product (9 km) Des 0.930" 3.774 -3.072 2192 6220
UHRWSMN P
The SMAP L2 P Asc 0.796 8.802 —7.819 4.041 6469
Product (36 km) Des 0914 4.038 -3.319 2.301 5774
Product (9 km) Des 0.909" 2.444 -1.935 1493 1523
EHWSN «
The SMAP L2_P Asc 0.829 6.652 -5.913 3.046 1638
Product (36 km) Des 0.908" 2.285 -1.793 1.417 1443

a) * Refers to passing significance test of 0.001. ASC refers to ascending, Des refers to descending.

product in both watersheds because of strong influence by
RFT disturbances (Oliva et al., 2012). This data lacking
partially limited the performance of the SMOS L2 product.
Other studies have also stated that the SMOS products show
worse performance than the SMAP products, due to the
different impacts of topography and vegetation on both
products (Chen et al., 2017; Cui et al., 2017; Jin et al., 2017).

In the study area, the SMOS mission views the surface at
incidence angles ranging from 31.2° to 45.5°, and the SMAP
mission views the surface at a constant angle of 40°. The
complex terrain surface in the study area may cause changes
in the overall surface emissions, and this topographic impact
would change with the viewing angle. Because the SMOS
mission uses multi-angled measurements to derive soil
moisture, it seems to be more influenced by the topography
than the SMAP mission (Jin et al., 2017). Other studies also
report that the SMOS products show worse performance than
the SMAP products in their evaluations, especially in
mountainous area (Chen et al., 2017; Cui et al., 2017; Jin et
al., 2017). Compared with SMOS, the SMAP mission pro-
vides brightness temperature observation with a lower
measurement error (De Lannoy et al., 2015). This indicates
that topography shows greater impacts on the SMOS product
than the SMAP products, leading to worse performance of
the SMOS product in mountainous area.

In both the SMOS and SMAP missions, the vegetation
attenuation factor ¢,(6) can be computed from the optical
depth z,(0) as ¢,(0)=exp(—7,(0)/costl). According to eq. (10),
the following parameter effects can be distinguished in both
missions under vegetation conditions: incident angle 6, ve-

getation scattering w,, and optical depth z,(6). Although both
missions apply the tau-omega model, the SMOS mission and
the SMAP mission differ significantly in estimating afore-
mentioned retrieval parameters in eq. (10).

In the SMOS L2 algorithm, the value of w, is assumed to
be zero over low vegetation canopies (nonforested biomes)
and 0.06, —0.08 over forests (Kerr et al., 2012a). In the
SMAP L2 algorithm, the values of w, are determined in a
look-up table ranging from 0.05 to 0.08 for different vege-
tation types and 0 for barren land (O’Neill et al., 2015; Chan
et al., 2016). The w, values are 0.02, -0.04 over low vege-
tation and 0.03, —0.06 over forested areas (Konings et al.,
2016), while the optimum w, values are 0.08, —0.12 at global
scale (Fernandez-Moran et al., 2017). The w, values in the
SMAP mission are more specific on different vegetation
types and closer to the optimum values than in the SMOS
mission.

In the SMOS mission, the optical depth ,(0) is estimated
by ,(0)=1y AD(H)(sinz(ﬁ)tthrcosz(Q)). In which, #, is the cor-
rection parameter for anisotropic effects in the canopy
structure, and ryup is estimated by the leaf area index (LAT)
as tyap=b;*LAI+b, (Kerr et al., 2012b). In the SMAP mis-
sion, 7, is estimated by the vegetation water content (VWC)
as 7,=b,xVWC (Jin et al., 2017). All the vegetation para-
meters b, b, and b, are empirical constants in both missions.
Under all the vegetation types, both the SMAP products
performed better than the SMOS product in both study wa-
tersheds (Table 4). Thus, we can infer that the estimation of
7,(0) in the SMAP mission is more appropriate than those
used in the SMOS mission.
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In summary, at a constant view angle, the brightness
temperature observations in the SMAP mission are more
accurate than the SMOS mission in the study area because of
its lower topographic impacts. The estimations of w, values
and 7,(0) of the SMAP products are also more suitable in
mountainous area. Hence, both the SMAP products per-
formed significantly better than the SMOS product in both
watersheds under vegetated surfaces.

4.3 TImpacts of station density and representation

Both the SMOS and SMAP products performed better in
UHRWSMN than in EHWSN, this is attributable to the
station density and representation of in sifu observations.
Generally, higher station density would lead to more accurate
evaluation. Because there are two in sifu stations of
UHRWSMN installed on grassland in the Babaohe River
Watershed, all the three SMOS and SMAP products have
been evaluated by all the stations of both UHRWSMN and
EHWSN in the Babaohe River Watershed. As shown in
Table 8, evaluated by the combination of four indices, all the
three products performed slightly better against all the sta-
tions in the Babaohe River Watershed than those only against
stations in EHWSN. Because all the in situ stations in the
Babaohe River Watershed are installed on grassland, the
better performance achieved by employing more stations
indicates that higher observation station density would show
better performance of product evaluation in the study area. In
this study, the station density is 35x10 *km ™ in
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UHRWSMN, and 100x10 *km > in EHWSN. However,
even with lower station density, all the SMOS and SMAP
products show better performances in UHRWSMN, in-
dicating that station representation is much more important
in the evaluation of the satellite soil moisture products.

The soil moisture estimates of all the three products are
drier in the northwest and wetter in the southeast of the study
area, which is consistent with the precipitation pattern in the
study area (Ding et al., 1999; Wang and Zhao, 2013). Par-
tially because of the product resolutions, the soil moisture
distributions of both the SMOS L2 and SMAP L2 P pro-
ducts show lower temporal persistence in the east than in the
west, while the SMAP L2 P_E product showed lower per-
sistence in the outlying areas than in the central areas. Also
because of the product resolution, the soil moisture dis-
tributions of the SMAP L2 P product had the greatest per-
sistence over time, followed by the SMOS product and the
SMAP L2 P E product.

5. Conclusion

This study presents evaluation of the SMOS (L2) and SMAP
(L2 P_E and L2 P) soil moisture products against two
sparse in situ networks, the UHRWSMN (2015-04-01-2017-
06-22) and EHWSN (2015-04-01-2015-12-31), in the up-
stream of the Heihe River Watershed, Northwest China.
Results show that all the three products performed well in
catching the temporal trend of the in situ observations in the

Table 8 Comparison of the SMOS product and both SMAP products in UHRWSMN and EHWSN from 2015-04-01 to 2015-12-317

In situ networks Product Overpassing moments RMSE (m3 m73) Bias (m3 m73) ubRMSE (m3 m73) n
The SMOS Asc 0.348" 0.085 -0.027 0.080 781
Product Des 0.425" 0.086 ~0.042 0.076 1409
Asc 0.540" 0.061 -0.030 0.053 2845
UHRWSMN The SMAP L2 P_E .
roduct (9 km) Des 0.582 0.060 —0.025 0.054 2504
The SMAP L2 P Asc 0.531° 0.063 -0.027 0.057 2768
Product (36 km) Des 0.579" 0.061 -0.021 0.057 2431
The SMOS Asc 0.367" 0.144 ~0.092 0.111 497
Product Des 0.391° 0.161 -0.109 0.118 1016
Product (9 km) Des 0.441" 0.134 -0.107 0.080 1523
The SMAP L2_P Asc 0.464" 0.139 -0.110 0.086 1638
Product (36 km) Des 0.450" 0.141 -0.115 0.082 1443
Asc 0.370° 0.139 —0.086 0.110 551
The SMOS Product N
Des 0.386 0.155 -0.104 0.115 1119
in Babaohe River Product (9 km) Des 0.446 0.127 —0.097 0.082 1686
The SMAP L2_P Asc 0471 0.130 -0.100 0.083 1816
Product (36 km) Des 0.458° 0.132 ~0.105 0.080 1596

a) * Refers to passing significance test of 0.001. ASC refers to ascending, Des refers to descending.
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study area. Because of the uncertainty in brightness tem-
perature and the underestimation of effective temperature,
the SMOS product and both the SMAP products show “dry
bias” in high, cold mountainous area.

In the mountainous area, the brightness temperature ob-
servations of the SMAP mission are more accurate than the
SMOS mission because of its lower topographic impacts at a
constant view angle of 40°. The estimations of single scat-
tering albedo ), and optical depth z,(¢)) of the SMAP product
are also more suitable than the SMOS mission in mountai-
nous area. Thus, both the SMAP products performed sig-
nificantly better than the SMOS product. Comparing with
observation station density of in situ network, station re-
presentation is much more important in the evaluation of the
satellite soil moisture products.

Based on the results of this study, the following sugges-
tions are proposed to improve both the SMOS and SMAP
missions in the future: further optimization of effective
temperature; revision of the retrieval algorithm of the SMOS
mission to reduce the topographic impacts; and careful se-
lection of in situ observation stations for better representa-
tion of in situ network in future evaluations.
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