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Abstract. The normalized difference vegetation index (NDVI) is widely used in global environmental and climatic change

research. However, the 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) is too coarse to quantify

changes in heterogeneous landscapes. On the other hand, the 30 m charge-coupled device (CCD) sensor on the Chinese

environment satellite (HJ-1) is severely affected by weather, which limits its use in studying the biophysical processes

evolving rapidly during the growing season. In cloudy areas, the problem is compounded; only a few images can be

obtained for the whole year. It is therefore impossible to obtain the high temporal spatial resolution NDVI required in

some applications. To solve this problem, the continuous correction (CC) data assimilation method was proposed to

produce high temporal spatial resolution NDVI by combining the advantages of the MODIS temporal information and

the CCD spatial information. The MODIS 16 day compositing/8 day windows Nadir BRDF-Adjusted Reflectance and

the CCD reflectance were used to predict 8 day/30 m NDVI for the Heihe River basin, China, in 2009. Comparison of

predicted data with field data showed that the two were in good agreement. The method demonstrated feasibility, and the

NDVI produced provided better vegetation information. The performance of CC depended on the acquisition time and

amount of the CCD images.

Résumé. L’indice NDVI (normalized difference vegetation index) est utilisé couramment en recherche environnementale et

sur les changements climatiques à l’échelle du globe. Cependant, la résolution de 1 km du spectroradiomètre MODIS

(Moderate Resolution Imaging Spectroradiometer) est trop grossière pour permettre la quantification des changements

dans les paysages hétérogènes. D’autre part, le capteur CCD (dispositif à transfert de charge) à 30 m de résolution monté à

bord du satellite environnemental chinois (HJ-1) est sérieusement affecté par la température, ce qui limite son utilisation

dans l’étude des processus biophysiques en évolution rapide durant la saison de croissance. Dans les zones nuageuses, le

problème est davantage amplifié; seulement quelques images peuvent être obtenues au cours d’une même année. Il est ainsi

impossible d’obtenir des mesures de NDVI à la haute résolution temporelle et spatiale nécessaire pour certaines

applications. Pour résoudre ce problème, la méthode d’assimilation des données par corrections successives (CC) est

proposée pour produire des valeurs de NDVI à haute résolution temporelle et spatiale en combinant les avantages de

l’information temporelle de MODIS et l’information spatiale du capteur CCD. Les images composites de MODIS sur

16 jours et les données de réflectance au nadir ajustées pour la FDRB pour des fenêtres de 8 jours ainsi que la réflectance

CCD sont utilisées pour prédire les valeurs de NDVI pour 8 jours et à 30 m de résolution pour le bassin du fleuve Heihe,

en Chine, en 2009. La comparaison des prédictions avec les données de terrain montre qu’il y a une bonne correspondance

entre les deux. La méthode a démontré son utilité et les valeurs de NDVI produites peuvent fournir une meilleure

information sur la végétation. La performance de la méthode d’assimilation des données par CC dépend du moment de

l’acquisition et de la quantité d’images CCD.

[Traduit par la Rédaction]

Introduction

The normalized difference vegetation index (NDVI) is

routinely produced from red (R) and near-infrared (NIR)

data acquired from various kinds of sensors. NDVI time

series reveal different temporal and spatial dynamic char-

acteristics according to variations in landscape types (Zhao,

2003), which reveal a certain degree of intra- and inter-

annual changes in vegetation (Weiss et al., 2004; Piao et al.,

2006). Time series NDVI derived from multiple satellite

sensors such as the Advanced Very High Resolution Radio-

meter (AVHRR), VEGETATION on Satellite Probatoire

d‘Observation de la Terre (SPOT/VGT), and the Moderate

Resolution Imaging Spectroradiometer (MODIS) have pro-

ven to be powerful tools in global change-related studies

such as vegetation dynamics monitoring (Anyamba and
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Tucker, 2005; Martı́nez and Gilbert, 2009; Lopes et al.,

2009), climate change (Potter and Brooks, 1998), land cover

mapping and change detection (Defries and Townshend,

1994; Lunetta et al., 2006), and various other fields.

However, the coarse resolution of these sensors limits their

use in studies of biophysical processes on heterogeneous

land surfaces (Shabanov et al., 2003; Doktor et al., 2009).

For example, vegetation monitoring is reduced in fragmen-

ted landscapes, where most of the pixels are composed of a

mixture of different surfaces (Busetto and Meroni, 2008)

such as agricultural fields, grassland, or patches of other

vegetation as well as unvegetated areas, which are often

smaller than moderate-resolution pixels. The 1 km AVHRR

from 1990 to 1996 and 200 m land use data are used to

investigate the temporal and spatial vegetation dynamics of

subclasses using statistical methods (Senay and Elliot, 2000);

however, only general trends in vegetation changes over a

year can be evaluated using this method. Moreover, the

vegetation fraction cannot be accurately estimated from

NDVI data because of the nonlinear relationship of NVDI

with the vegetation fraction (Jiang et al., 2006) and the

saturation effect of NDVI at high biomass (Carlson and

Ripley, 1997).

High spatial resolution data such as those from the High

Resolution Visible (SPOT/HRV) sensor, the Landsat The-

matic Mapper/Enhanced Thematic Mapper (TM/ETM�),

and the China�Brazil Earth Resources Satellite (CBERS)

can be used for land use and land cover mapping (Oetter

et al., 2001; Knorn et al., 2009), ecosystem dynamics

monitoring (Stefanov et al., 2005), water quality monitoring

(Zhang et al., 2010), and yield estimation (Jarlan et al., 2008;

Lopes et al., 2009). The spectral response function of the

charge-coupled device (CCD) sensor on the Chinese envir-

onment and disaster monitoring and forecasting satellite

(HJ-1) is like that of Landsat, SPOT/HRV, and CBERS.

This meets the spectral information needs of the vast

majority of operational remote sensing applications

(Li et al., 2008), including large water body environmental

monitoring, aerosol optical thickness inversion studies, and

biogeochemical parameter estimation (J. Wang et al., 2010;

Q. Wang et al., 2010). HJ-1 data quality was also extensively

analyzed and evaluated (Li et al., 2009). The 2�4 day revisit

cycle and the 30 m spatial resolution could have made these

data much more useful for quantitative remote sensing, but

only a few images can be obtained every year in most

regions of China because of the vagaries of weather

conditions and other constraints. For example, the sensor

response is very weak or even nonexistent when surface

radiation is low, or the acquired image sometimes has

irregular stripes, which is still an unsolved problem. There-

fore, the CCD is confronted with the same problem as TM/

ETM�, SPOT/HRV, and CBERS, that their temporal

resolution (the revisit cycle of Landsat/TM, SPOT/HRV

and CBERS is 16 days, 26 days, and 26 days, respectively) is

not sufficient for detecting rapid surface changes, especially

in frequently clouded areas (Asner, 2001). This limits the

usefulness of these devices in studying the rapidly evolving

biophysical processes that occur during the growing season.

Most studies that are focused on the generation of high

spatial resolution time series data combine high spatial

resolution images with frequent revisit coarse-resolution

data. A procedure based on classification and regression

analysis techniques can be used to generate an NDVI

dataset with the spatial resolution of TM images and the

temporal resolution of AVHRR data (Maselli and Gilbert,

1998). A semiphysical fusion approach was used to combine

the MODIS bidirectional reflectance distribution function

(BRDF)/Albedo product with ETM� data to predict

ETM� reflectance (Roy et al., 2008). The temporal

adaptive reflectance fusion model (STARFM, Gao at al.,

2006) blends the high temporal resolution of MOD09GHK

and the high spatial resolution of TM to predict daily 30 m

reflectance data, obtaining good results.

In our study, a data assimilation method with continuous

correction (CC, Liang, 2009) was used to combine the

temporal information from MODIS and the spatial infor-

mation from the HJ-1 CCD to produce a high temporal and

spatial resolution NDVI to provide more sufficient informa-

tion for applications that require NDVI both in time and in

space, such as timely vegetation fraction estimation. The

MODIS 16 day composing/8 day windows 1 km Nadir

BRDF-Adjusted Reflectance Product (NBAR) and the HJ-1

CCD 30 m multispectral reflectance data are used mainly to

produce an 8 day, 30 m view-geometry removed NDVI

dataset. The results have been validated using field measure-

ments and have also been compared with the NDVI

generated by STARFM using the same MODIS and HJ-1

CCD data. In the first national soil and water conservation

status investigation in China, the 8 day, 30 m vegetation

fraction was obtained for a year based on the NDVI dataset

produced by CC method. The time resolution of the data

generated by STARFM depends on the time resolution of

the input MODIS data. However, MODIS daily resolution

reflectance data are not suitable for generating NDVI values

without correction for the differences caused by observa-

tional geometry. This is also why the NBAR was used here

instead of the MODIS VI product.

Study site

A small part of the Heihe River basin (Heihe), Gansu

Province, China, located at 38838?N�39825?N and

99850?W�100850?W, was selected as the study area and is

shown in Figure 1c. This area is part of the Chinese

Simultaneous Remote Sensing and Ground Based Experi-

ment (Heihe experiment) plot shown in the red boxes in

Figure 1b. Some in situ canopy spectral reflectance data have

been measured and can be used to validate the results, as

detailed in the Methods section. The study area was

approximately 85 km � 85 km, with elevations ranging

from 1600 m to 2300 m above sea level. It consists of a
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manmade oasis zone, an oasis�desert transition zone, a

desert�grassland zone, and a bare or very sparsely vegetated

zone. The land cover types are mainly irrigated land,

grassland, forest, and bare or very sparsely vegetated land,

as shown in Figure 2a. The manmade oasis is a farmland
ecosystem, where the crops grown are mainly corn and

winter wheat. The dominant vegetation species on the sunny

slopes and the shady slopes of the hilly area in the

southwestern portion of the region are Picea crassifolia

and grass, respectively. The local annual average tempera-

ture in 2009 was about 6.39 8C and the total precipitation

was approximately 187 mm. The meteorological monthly

data is shown in Figure 3.

Methods

HJ-1 NDVI: observations

HJ-1 was launched on 6 September 2008. The HJ-1

mission involves three satellites named HJ-1A, HJ-1B, and

HJ-1C; the last is to be launched in the future. The CCD

sensors on HJ-1A and HJ-1B provide images with four

bands in the visible to near-infrared spectrum and with a

ground-swath width of 700 km at a 30 m pixel size.

HJ-1 CCD Level 2 multispectral images were collected in

2009. The Level 2 product was a systematic geometry-

correction product and is the highest level product provided

to date by the China Center for Satellite Resource Data and

Applications. Land-surface reflectance is obtained from a

series of processing steps based on the product. First,

geometric correction is performed using the ERDAS

IMAGINE software. A polynomial correction algorithm is

used to correct the data based on ground control points

(GCPs) chosen from a 1:100 000 topographic map, while also

using a digital elevation model for topographic correction.

The correction error is less than one pixel. The results are

georeferenced to the universal transverse Mercator (UTM)

projection. In the second step, the radiance data is obtained

using a linear equation consisting of two calibration coeffi-

cients: gain and offset. The coefficients are determined by

Figure 1. (a) Administrative boundary of China; (b) Heihe region; (c) the study site (background is an HJ-1 image with the 0.43�0.52,

0.52�0.60, and 0.63�0.69 mm bands displayed) located in No. 3 in (b).
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calibrations carried out in the laboratory and in the field.

Finally, surface reflectance is determined as the inverse of the

radiance. Atmospheric correction consists of three steps:

1. The top-of-atmosphere (TOA) irradiance at the time

of acquisition of the MODIS Terra imagery is

obtained using the MODIS onboard calibration

Figure 2. Land cover types in the study area: (a) 30 m land- cover map, (b) 1 km MOD12Q1

image.

Figure 3. Meteorological monthly data of the study area: (a) monthly total precipitation, (b) monthly average temperature.

Vol. 37, No. 6, December/décembre 2011
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product. Then, the calibrated MODIS L1B radiance

(MOD02) is changed to TOA reflectance.

2. Atmospheric parameters are obtained by inverting

the atmospheric radiance transfer model (Lee and
Kaufman, 1986) using the MODIS TOA reflectance

and MODIS surface reflectance (MOD09). If water

or dense vegetation is found in the CCD image, the

dark-object method (Liang and Fang, 2001) is used to

derive the parameters optically.

3. Because the crossing times of Terra and HJ-1 are both

approximately 1030 local time, it is assumed that

atmospheric conditions do not change between the
two readings. Therefore, the surface reflectance could

be derived from the radiance using the atmospheric

radiance transfer model with appropriate parameters.

If a sensor looks at the same pixel at the nadir or at a wide

angle, the NDVI observed will be quite different. If the

NDVI differences are large because of the large field of view

(FOV, 308) of the HJ-1 CCD, these differences must be

eliminated to obtain comparable NDVI values. A simple

cosine-correction method could be used to perform an
angle-effect correction to obtain the nadir-observed

NDVI, but the correction is ignored because the selected

images covering the study area are part of a scene that is

observed almost at the nadir.

The NDVI is an index of the absorptive and reflective

characteristics of green vegetation in the R and NIR

portions of the electromagnetic spectrum and can be

calculated from reflectance measurements as follows:

NDVI ¼ qNIR � qR

qNIR þ qR

(1)

where rR and rNIR are the reflectance of the R and NIR

spectral regions, respectively. The HJ-1 CCD NDVI (HJ-1
NDVI) used in CC are produced from reflectance images

using Equation (1).

The 30 m land cover map shown in Figure 2a was

produced by altering a historical land cover map of the

study area according to a newly obtained HJ-1 CCD image

through visual interpretation. Its overall classification

accuracy is 76% as validated by field investigation data.

Two hundred control points were determined by a differ-
ential global positioning system instrument. The land cover

type of each control point was confirmed through field

investigation. Estimating the accuracy of the land cover map

involves determining whether the categories determined by

classification are the same as those confirmed by field

investigation for the same locations. The accuracy was not

very high because of GPS positioning errors, field investiga-

tion errors, and visual interpretation uncertainty.

MODIS NDVI: background field values

MODIS is a key onboard instrument on the Terra and

Aqua satellites designed for global change studies and it

monitors land surfaces, the biosphere, the atmosphere, and

the seas and oceans once or twice a day. The Level 1A, Level

1B, geolocation, and cloud-mask products along with higher

level land and atmospheric products are generated by the

MODIS Adaptive Processing System and are parceled out

to three Distributed Active Archive Centers (DAAC) for

distribution.

All products we used were downloaded from the Land

Processes DAAC, including the MODIS 16 day L3 Global

1 km SIN Grid Nadir BRDF-Adjusted Reflectance (NBAR,

MCD43B4) and the corresponding quality description

product (MCD43B2), from 2004 to 2009, and the MODIS

Yearly L3 Global 1 km Land Cover Type product

(MOD12Q1) in 2004.

The MOD12Q1 was generated from Terra and Aqua

images and incorporates five different land cover classifica-

tion systems (IGBP, UMD, LAI/FPAR, NPP, and PFT),

derived through a supervised decision-tree classification

method. The plant functional type (PFT) land cover types

included 13 classes defined by the PFT classification system,

which included nine vegetation classes, three unvegetated

classes, and one unclassified class. The PFT land cover types

of the current study area are shown in Figure 2b.

The global 1 km gridded and tiled NBAR product is

produced every eight days by the MODIS BRDF/Albedo

algorithm, which makes use of a semiempirical kernel-driven

bidirectional reflectance model and every 16 day acquisi-

tions of multispectral Terra and Aqua images. The high-

frequency revisit cycle of MODIS enables acquisition of

observations from sufficient looks to form a BRDF for

correction of surface reflectance to nadir view. NBAR is

more stable and consistent because the directional informa-

tion has been removed. And NBAR also contains much

temporal information about vegetation (Schaaf et al., 2002).

NBAR was computed for seven of the MODIS spectral

bands (1�7) at the mean solar zenith angle; band 1 (R) and

band 2 (NIR) were used.

The quality information in the spectral NBAR was

provided by the MCD43B2 dataset and includes band-

averaged quality information and band-specific quality

information. The band-specific data were coded with

32-bit integer values. Bits 00�03 were used to store band

1 quality, bits 04�07 to store band 2 quality, and so on. The

term ‘‘quality assessment’’ (QA) refers to the corresponding

values of ‘‘bits’’. In other words, the QA value for each pixel

can be 0, 1, 2, 3, or 4. A small QA value indicates better data

quality. For any pixel, if its QA flags for the R and NIR

bands are both zero, its corresponding NDVI is of the

highest quality. Otherwise, the NDVI is of poor quality.

Only the highest quality NDVI values are used, thus

minimizing the errors caused by poor weather conditions.

The General Cartographic Transformation Package was

used to transform the sinusoidal (SIN) projection of all the

MODIS products to the UTM projection. Then all the data,

including the first two bands of NBAR, the PFT land cover

Canadian Journal of Remote Sensing / Journal canadien de télédétection
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dataset, and the QA data, were clipped to the extent of the

HJ-1 CCD images covering the study area.

Image registration is necessary if different data sources

exhibit location errors. There are characteristic lines in
MODIS and HJ-1 CCD reflectance images that are helpful

in finding the GCPs, thus reducing the registration difficul-

ties due to the enormous difference between MODIS and

HJ-1 CCD spatial resolution. The characteristic lines in the

two images are displaced only horizontally after the MODIS

projection transformation. The Rotate, Scale, and Trans-

form model in the ENVI software was used to correct the

MODIS reflectance images according to the GCPs selected
from the base-image HJ-1 CCD reflectance data. The same

GCPs were applied to the MOD12Q1 and to the QA data.

The difference in the MODIS data before and after

registration was somewhat hard to distinguish by visualiza-

tion because the location difference between HJ-1 CCD and

MODIS was only one to two MODIS pixels in the

horizontal direction. The difference can be ignored. How-

ever, if the location difference is substantially large, registra-
tion is required. Registration of HJ-1 CCD data and the

30 m land cover map is more important if they are generated

from different data sources because CC is conducted one

30 m pixel at a time.

The 1 km NDVI was derived from NBAR using Equation

(1). For NBAR, it was necessary first to subtract the offset

and then to multiply by the scale factor to obtain the true

surface reflectance. It is unnecessary to do this when
calculating the NDVI because the offset is zero.

High spatial and temporal resolution NDVI

The time series NDVI closely tracks the annual cycle of

growth and decline of vegetation. The temporal and spatial

dynamics of NDVI represent vegetation phenology as it

varies from one land cover type to another. The NBAR
NDVI can provide 16 day compositing/8 day windows and

nadir-observed 1 km measurements for the period from 2004

to 2009. The NDVI time-dynamic model was derived from

NBAR and other auxiliary data.

The registered MODIS and the 30 m land cover maps

were processed by a program written in the C programming

language to output the area percentage image for each

category. For example, a MODIS pixel covers N 30 m pixels
in space. Assume that the land cover type of the MODIS

pixel is Ta, that the classes of the 30 m pixels are Ta, Tb, and

Tc, and that the numbers of pixels in classes Ta, Tb, and Tc

are Na, Nb, and Nc, where Na � Nb � N c � N. Therefore,

the area ratios of Ta, Tb, and Tc in the MODIS pixel are

Na/N, Nb/N, and Nc/N. If the N 30 m pixels all belong to Ta

according to a generalized definition such as ‘‘grass’’, the

MODIS pixel is judged to be a 100% ‘‘pure’’ pixel in class
Ta. Prior knowledge of the local is also taken into

consideration; for example, there are classes called ‘‘cereal

crop’’ and ‘‘broadleaf crop’’ in the PFT classification shown

in Figure 2b, which are both used because the crops planted

in Heihe include not only cereals, but also broadleaf crops.

A moving window the size of a MODIS pixel was used, the

area ratio for each category in the MODIS pixel was

calculated, and the area percentage images were generated
by moving the window one pixel at a time. Although the

MODIS land cover product and the 30 m land cover map

were generated independently and were not produced in the

same year, it is not necessary to assume that the land cover

types have not changed. Even if they have, the method is

feasible as long as the same land cover type exists in both the

MODIS and 30 m land cover data sets according to the

definition and prior knowledge and as long as pure MODIS
pixels of the land cover type in question can be found. The

accuracy of the MODIS product used was generally good

with respect to the 30 m land cover types and the authors’

prior knowledge. The MOD12Q1 contains some classifica-

tion errors, but they were not considered.

If the area ratio of a category in a MODIS pixel is 100%,

or at least greater than 95%, then the NDVI time series and

the corresponding QA series of the pixel are derived from
the NBAR and the QA data set for the period from 2004 to

2009. The NDVI and QA for all the pure pixels in the

category are then extracted. For the dataset with 16 day

compositing but on 8 day windows, each pixel represents 46

observations per year and 276 observations over 6 years.

The NDVI for each year will be based on less than 46

observations if only the highest quality NDVI is used.

However, on the same Julian Day of Year (DOY) in each of
the 6 years, there are still observations. It is possible to

calculate the average NDVI value and standard deviation

(SD) of these observations on the same DOY, as expressed in

Equation (2). The six yearly NDVI observations on each

DOY are processed in the same way, thus forming a new set

of 46 observations which is called here a multiyear average

NDVI time series

NDVIavgðTÞ ¼ 1

6 �N

XN

I¼1

X2009

Y¼2004

NDVIðI ;T ;YÞ (2)

where the range of T is 1,2,. . .,46, which is a description of

the time in a year, actually DOY � T � 8 � 7; N is the

number of pure MODIS pixels of a land cover type; Y is the

year of the data, from 2004 to 2009, NDVI(I,T,Y) is the ith
pure pixel NDVI value at time T in year Y, and NDVIavg(T)

is the average NDVI over the 6 years at time T.

The average NDVI is marked as belonging to a particular

land cover type because only the NDVI values of MODIS

pure pixels in the same category are used to construct it.

Every land cover type has its own average NDVI time series

and its corresponding SD series, which is called its ‘‘NDVI

time-dynamic model’’. The term ‘‘time-dynamic model’’ is
just a description of the average NDVI time series, not of the

common sense model. Some models are shown in Figure 4 as

examples. Each model represents the changes of its corre-

sponding land cover type in time and in space.
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There are MODIS pure pixels for most of the classes

except for shrubs. It is quite reasonable that there are no

pure pixels for some land cover types because of the coarse
resolution of MODIS and the fragmentation of the land

surfaces. Pixel unmixing is therefore needed to obtain

subpixel information. Some studies indicate that it is better

to use statistical models for large scales (Wan et al., 2008).

The linear unmixing model expressed in Equation (3) was

chosen to unmix the MODIS mixed pixels to obtain the

subpixel NDVI

NDVI ¼
Xn

i¼1

fiNDVIi þ e (3)

where NDVI represents the NDVI of the mixed MODIS

pixel, the end-member NDVIi is the NDVI value of the ith

category in the pixel, fi is the area ratio of the ith category in

the pixel, and o is an error term.

MODIS shrub pixels were selected from the 1 km land
cover map, and the mixed status of these pixels was

determined according to the area percentage images. The

area ratios of the subpixel classes in these pixels are shown

in Table 1. Only three pixels are listed, with each line

representing the mixed situation of a MODIS shrub pixel.

Take the first line in Table 1 as an example; the end members

in the MODIS pixel are shrub, alpine meadow, and desert,

and their area ratios are 0.6000, 0.27592, and 0.12408,
respectively. The alpine meadow and desert average NDVI

time series were extracted and are shown in Figure 4a and 4b.

The shrub subpixel NDVI time series were derived by

inverting Equation (3) using Equation (4) instead of the

commonly used least-squares method. The shrub NDVI

time-dynamic model was then calculated as in Equation (4)

and is illustrated in Figure 4f:

NDVIshrub ¼ ðNDVIMODIS �NDVIalpine meadow

� falpine meadow �NDVIdesert � fdesertÞ
.

fshrub (4)

To prove that the subpixel NDVI time series is basically

the same as the MODIS pure pixel NDVI time series,

the MODIS 8 day compositing 250 m surface reflectance

(MOD09Q1) from 2004 to 2009 was downloaded from

the Land Processes DAAC. The MOD09Q1 includes reflec-

tance for bands 1 and 2 and the corresponding band quality

dataset. The data preprocessing method was the same as that

used for NBAR and QA. The result was a set of quality-
controlled 8 day 250 m NDVI covering the current study

area. The pure shrub pixels can be found in the 250 m NDVI.

The shrub average NDVI time series was then extracted, and

the result is shown as the olive green line in Figure 5. The two

lines in Figure 5 are close together, and the correlation

coefficient (R2) of the NDVI time series as unmixed from

Figure 4. NDVI time-dynamic models for six land cover types: (a) alpine meadow, (b) desert, (c) forest, (d) irrigated land, (e) meadow,

and (f) shrub.

Table 1. Area ratio of each category in three MODIS shrub pixels*.

Category

Area

Ratio Shrub

Irrigated

land

Alpine

meadow Desert

1 0.60000 0.00000 0.27592 0.12408

2 0.48735 0.01143 0.49224 0.00000

3 0.67510 0.00000 0.00000 0.32490

*Only three pixels are listed here
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1 km NBAR and the NDVI time series extracted from the

250 m MOD09Q1 is 0.825. The comparison indicated that

the inversion method is simple, fast to compute, and effective.

The degree of correlation between MODIS and HJ-1

NDVI is also discussed to confirm to what extent the

MODIS NDVI can represent the HJ-1 NDVI. In Heihe,

most of the unvegetated region is desert, where the

reflectance is stable. The NDVI values at the closest DOY

to MODIS and HJ-1 for this category were compared, and

the results are shown in Table 2. The mean NDVI and SD of

all the HJ-1 pixels covered by a MODIS pure desert pixel

were calculated. All the pure desert pixels were included.

The NDVI R2 of the MODIS pure desert pixels and their

corresponding HJ-1 mean NDVI pixels were also calculated

on different DOY. The SD value over each MODIS pixel

extent was very small, and a very small SD indicates very

little change in a 1 km pixel. The R2 values were stable over a

period of time, but seem a little low, as shown in the top half

of Table 2. The reasons why the SD values are small, but the

R2 values are only approximately 0.7, may be one or both of

the following: (1) the band settings, spectral response

functions, and atmospheric correction methods of the two

sensors are different, which may cause a difference between

MODIS and HJ-1 NDVI; or (2) the calibration coefficients

for HJ-1 are still being adjusted, and errors are inevitable.

Fortunately, the mean, SD, and NDVI ranges of the two

were similar, as shown in the bottom half of Table 2. The

MODIS R and NIR bands have similar bandwidths to those

of the HJ-1 CCD sensor, except that their bandwidths were

narrower, as shown in Table 3. Therefore, calculating a

multiyear average NDVI of the pure pixels is a simple way to

obtain the NDVI climatology of a category. Moreover, an

NDVI time-dynamic model can represent NDVI changes of

a category over time. The model should be adjusted using

the HJ-1 CCD spatial information to approximate the real

changes of the category in time and in 30 m space.

Data assimilation (DA) can be used to combine the

models and the observations. The CC method can consider
two data sources simultaneously and can predict highly

reliable analytical values over the whole time series. The

model can be expressed in the form of Equation (5)

Xa rið Þ ¼ Xb rið Þ þ

Pn

j¼1

- ri; rj

� �
Xo rj

� �
� Xb rj

� �h i

E2
o

�
E2

b þ
Pn

j¼1

- ri; rj

� � (5)

where N is the number of observations, the HJ-1 NDVI; Xo,

Xb, and Xa are the observation, background field, and

predicted/analysis NDVI, respectively; and ri and rj are the
prediction date and the observation date, respectively. The

weighting factor between MODIS and HJ-1 is 6, which is

set according to the application. Eo and Eb are the errors of

the observation and background field data, respectively.

The average NDVI time series of the NDVI time-dynamic

model for each category was used as the background field

data for the category, and the HJ-1 NDVI of the same

category was used as the observations. Errors in the back-
ground field data were quantified using the SD series of the

NDVI time-dynamic model, and observation errors were

assumed to be random Gaussian noise or simply set to a

fixed low value. The weighting factor was the inverse of the

time distance between background and observation values,

specifically described in Equation (6). The predicted

NDVI values were generated by entering each category’s

background field NDVI, observation NDVI, and
weighting factor between the two into the model. The

category information is provided by the 30 m land cover

map.

-ðri; rjÞ ¼ abs ri � absðri � rjÞ
� �

=ri (6)

NDVI Predicted by STARFM

The STARFM method (Gao et al., 2006) predicts the

central pixel value in a window by introducing additional

information from homogeneous neighboring pixels, which

are weighted according to the spectral difference between

TM and MODIS at the same time, the temporal difference
between the input time and the time predicted time, and the

spatial distance of other pixels to the central pixel in the

window, as expressed in Equation (7).

H xx=2; yx=2; t2

� �
¼
Xx

i¼1

Xx

j¼1

Xn

k¼1

Wijk

� M xi; yj; t2

� �
þ H xi; yj; tk

� �
�M xi; yj; tk

� �� �
ð7Þ

where v is the window size, (xv/2, yv/2) is the central pixel

of the window; Wijk is the weight, which is a multiplier

Figure 5. Average NDVI time series for shrubs derived from

1 km and 250 m MODIS reflectance images. The olive green line

is the multiyear average NDVI time series derived from NBAR,

and the pink line is the multiyear average NDVI time series from

the 250 m MOD09Q1.

Vol. 37, No. 6, December/décembre 2011
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factor of the spectral difference between H(xi, yj, tk) and

M(xi, yj, tk), the temporal difference between M(xi, yj, t0)

and M(xi, yj, tk) M(xi, yj, t2) and the local distance difference

between (xi, yi) and (xv/2, yv/2) in the window; M(xi, yj, tk) is

NBAR NDVI at time t2, H(xi, yj, tk) and M(xi, yj, tk) is the

HJ-1 and NBAR NDVI at the high spatial resolution data

acquisition time tk. More detailed information is in Gao

et al. (2006).

All poor quality NBAR NDVI pixels were removed

according to their QA, that is, only those pixels having

QA values for the R and NIR bands both equal to zero were

retained. There was no QA layer in the HJ-1 image, and

therefore certain errors such as cloud contamination could

be introduced. The NBAR NDVI and the HJ-1 NDVI used

in the CC were combined by means of the STARFM

method, and parts of the results are shown in Figure 6a.

Field NDVI

To validate the accuracy of the predicted NDVI, some in

situ canopy spectral reflectance values measured in the

Heihe experiment were used (Li et al., 2009). Several sites

are located there, but only one of these could provide time-

series measurements, which are shown in the yellow box

(YK) in Figure 1. The other sites were also able to provide

Table 2. Statistical analysis of MODIS and HJ-1 desert NDVI.

NDVI correlation on different DOY

MODIS NDVI 65 73 121 145 153 161 169 177 204 209

HJ-1 NDVI 66 76 123 142 152 158 168 179 201 208

R2 0.687 0.643 0.661 0.623 0.674 0.692 0.699 0.664 0.600 0.625

NDVI statistics on different DOY

Statistic DOY Minimim Mean Maximum SD

MODIS NDVI 65 0.042 0.077 0.119 0.012

HJ-1 NDVI 66 0.042 0.067 0.095 0.008

Difference �0.012 0.010 0.055 0.011

MODIS NDVI 73 0.042 0.076 0.114 0.012

HJ-1 NDVI 76 0.070 0.094 0.125 0.011

Difference �0.040 �0.018 0.016 0.009

MODIS NDVI 121 0.041 0.095 0.217 0.025

HJ-1 NDVI 123 �0.008 0.019 0.099 0.014

Difference �0.012 0.076 0.210 0.025

MODIS NDVI 145 0.038 0.106 0.310 0.040

HJ-1 NDVI 142 0.042 0.092 0.205 0.019

Difference �0.089 0.015 0.231 0.037

MODIS NDVI 153 0.044 0.113 0.318 0.045

HJ-1 NDVI 152 0.012 0.048 0.155 0.020

Difference �0.032 0.064 0.277 0.042

MODIS NDVI 161 0.053 0.119 0.389 0.051

HJ-1 NDVI 158 0.003 0.039 0.166 0.024

Difference �0.029 0.080 0.329 0.048

MODIS NDVI 169 0.054 0.121 0.394 0.054

HJ-1 NDVI 168 �0.002 0.048 0.214 0.028

Difference �0.004 0.073 0.348 0.052

MODIS NDVI 177 0.054 0.127 0.438 0.063

HJ-1 NDVI 179 �0.044 0.001 0.170 0.031

Difference 0.012 0.126 0.446 0.062

MODIS NDVI 201 0.052 0.127 0.433 0.071

HJ-1 NDVI 204 0.054 0.114 0.444 0.051

Difference �0.295 0.013 0.309 0.068

MODIS NDVI 209 0.045 0.126 0.440 0.070

HJ-1 NDVI 208 0.062 0.117 0.469 0.052

Difference �0.334 0.009 0.292 0.067

Table 3. HJ-1 CCD bandwidth and MODIS bandwidth.

HJ-1 CCD

Band

CCD Bandwidth

(nm)

MODIS

Band

MODIS

Bandwidth (nm)

1 430�520 3 459�479

2 520�600 4 545�565

3 630�690 1 620�670

4 760�900 2 841�876
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some discrete measurements, but they were insufficient to be

used for validation.

The spectral reflectance was measured approximately

once every 10 days between April and July 2008 using the
FieldSpec spectrometer developed by the Analytical Spectral

Device (ASD) Inc. The ASD FieldSpec is a hyperspectral

field experiment device with a wavelength range of 350�
2500 nm. It was set to a 258 FOV, observing nadir direction

and was handheld in the experiment. The hyperspectral field

reflectance measurements were processed using the HJ-1

CCD spectral response function to convert them to

band reflectance values corresponding to the CCD sensor.
The reflectance of band i can then be calculated as

qi ¼
XkTi

k¼kSi

r kð Þui kð Þ
,
XkTi

k¼kSi

ui kð Þ (8)

where ri is the calculated reflectance of band i, kSi
is the start

wavelength of band i, kTi
is the end wavelength of band i,

r(l) is the reflectance at wavelength l, and 8i(l) is the HJ-1

CCD spectral response factor at wavelength l.
The field NDVI was then calculated from the band

reflectance ri using Equation (1). Field measurements were

affected by various factors, for example, the measurement

target was vegetation canopy or soil, so the measurement

results can vary. Multiple measurements were taken in 30 m

space, and a simple average was chosen to represent the pixel

NDVI. A 16 day maximum value composite filter was

applied to the field NDVI to reduce observation errors and
to facilitate comparison with the predicted NDVI at the

same temporal resolution. The uncertainty arose mainly

from the measurement process and the measurement

environment.

Results and discussion

The high-resolution NDVI generated by the CC method

is shown in Figure 7. As visualized in Figure 7, the changes
in time and space of the onset of greenness, peak, and

senescence of vegetation are identified by the predicted

NDVI. For example, consider the main vegetation cover

type, irrigated land, where the main crops are winter wheat

and corn. March to September is the main growing period

of vegetation on the irrigated land. Winter wheat is sown in

March and comes to the heading and filling stage in early

May to late June and then gradually matures. Finally, its
growth phase ends in late July. Corn grows from May to

September. It emerges in early May, comes to the heading

and filling stage while the wheat is being harvested, and then

gradually matures until its harvest season in late August.

Figure 6. Comparison of NDVI predictions by STARFM and by CC: (a) STARFM, (b) CC, (c) difference of (a) and (b), that is, (a)�
(b). The differences are mainly normally distributed with zero mean.
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In other words, higher NDVI values appear from late June

to late August in most irrigated land regions, which is clearly

evident (corresponding to maps 24 through 31) in Figure 7.
The validation of the predicted NDVI consists of two

parts. The first part is the comparison of the predicted

NDVI with the images acquired by the HJ-1, which is called

‘‘image validation’’. The second part, called ‘‘in situ

validation’’, involves comparison of the predicted NDVI

with the field NDVI. Image validation indicates the extent

to which the predicted NDVI retains the information from

the CC-used HJ-1 NDVI and how well the predicted NDVI

performs compared with the CC-do-not-use HJ-1 NDVI. In

situ validation indicates the accuracy of the predicted

NDVI.

Image validation

Twenty of the 38 HJ-1 images available were affected by

cloud and other data quality problems and were discarded.

The remaining good quality data consisted of 10 images

providing full coverage of the study area and 8 images

providing only partial coverage due to the satellite orbit and

were used in two ways.

1) The ten images were used in CC to produce a high

spatial and temporal resolution NDVI. To facilitate

understanding, these ten images are called the ‘‘image

NDVI’’, and the high-resolution NDVI is called the

‘‘predicted NDVI’’. The R2 of the predicted NDVI and

the image NDVI on the closest DOY were calculated

and are listed in Table 4. Each column, except for the

first two, represents statistics on different dates within

a category. The R2 values of all land cover types were

almost all greater than 0.9, which indicated that the

predicted NDVI had captured the spatial information

in the image NDVI. Because only one image NDVI

was used to predict the NDVI of the vegetation

categories over a short time and because more than

one image NDVI was used to predict the bare land and

desert NDVI over the whole time period, the R2 values

of these two categories were lower than those of the

other categories.

The mean and SD of each category were also statistically

determined. There were only slight variations among the SD

values for each category, and the magnitude was 90.03 and

even 90.01 for some categories. These values indicated that

the predicted NDVI can retain the spatial characteristics of

the image NDVI because the SD can be considered to reflect

Figure 7. Eight day, 30 m NDVI maps, DOY � 1 to DOY � 361 (from top to bottom and left to right), with data recorded every

eight days. In the legend, ‘‘Filled Value’’ represents inland water and urban land. These areas are not of interest and are not studied.

Low NDVI values in forest and alpine meadow areas may be caused by cloud contamination in the HJ-1 NDVI used for CC.
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spatial variations. The differences between the mean values

of each category were mainly between �0.05 and �0.05.
2) The eight images were not used in CC, but were used in

image validation. Similar to the previous step, these

eight images are called the ‘‘validation NDVI’’, and the

high resolution NDVI is called the ‘‘predicted NDVI’’.

The NDVI of the zone of overlap between the

predicted and validation NDVIs on the closest DOY

were compared. The R2 values were also calculated as

in step 1, and the results are shown in Table 5.
In Heihe, forest and alpine meadow areas were sometimes

affected by cloud cover and cloud shadows. The clouds in

the image NDVI were not removed, and therefore they could

introduce some noise into the predicted NDVI; this explains

why most of the R2 values of the two categories were low.

As shown in the first line of Table 5, the R2 values of forest

(0.857) and alpine meadow (0.874) were much higher than

that of the two categories on the other dates because the

image NDVI used to generate the predicted NDVI on DOY

129 and the validation NDVI on DOY 125 were both cloud

free.

Compared with alpine meadow and forest, the R2 values

for meadow, shrub, and irrigated lands were higher over a

period of time, which indicated that the predicted NDVI and

the validation NDVI were in good agreement. The R2 values

varied slightly among the different types, and were different

at different times for the same category.

The high R2 indicated that the predicted NDVI could

achieve a very close approximation to the HJ-1 measure-

ments. The background field data of these categories were

quality controlled, and the 30 m NDVI observations were

selected cloud-free, high-quality data. It was concluded that

the predicted NDVI of these categories were similar to the

cloud-free, 30 m, nadir-observed NDVI. It was necessary to

use high-quality NDVI observations in CC. If completely
cloud-free images for every category were used, the results

would be much better. However, completely cloud-free

images are not easy to obtain, so future work by the

authors will involve trying to remove the clouds and cloud

shadows from the HJ-1 CCD images (Ri et al., 2010).

The mean and SD of every land cover type in the

predicted NDVI and the validation NDVI on the closest

DOY were statistically determined. The differences are
shown in Figures 8a and 8b. It is apparent that SD was

conserved with spatial variations. Therefore, it was con-

cluded that the predicted NDVI provided a good approx-

imation to the spatial characteristics of the corresponding

time validation NDVI while maintaining accurate numerical

values. The difference may be caused by the differences

between the image NDVI and the validation NDVI as well

as by the introduction of MODIS course information,
because the information in the predicted NDVI was

obtained from the image NDVI and the MODIS back-

ground field NDVI.

In situ validation

The time series of the four pixels (matching the four plots
in YK) in the predicted NDVI are shown in Figure 9.

Table 4. Correlation coefficients for all land cover types of the predicted NDVI and image NDVI.

No. DOY�category* Meadow Alpine meadow Shrub Forest Irrigated land Bare land Desert

1 065�066 1.000 1.000 1.000 1.000 1.0000 0.809 0.955

2 073�076 0.944 0.985 0.970 0.913 0.987 0.869 0.957

3 121�123 0.981 0.990 0.992 0.993 0.997 0.810 0.997

4 145�143 0.975 0.970 0.989 0.966 0.978 0.852 0.845

5 153�152 1.000 1.000 1.000 1.000 1.000 0.899 0.896

6 161�158 1.000 1.000 1.000 1.000 1.000 0.930 0.908

7 169�168 1.000 1.000 1.000 1.000 1.000 0.959 0.941

8 177�179 1.000 1.000 1.000 1.000 1.000 0.969 0.950

9 201�204 1.000 1.000 1.000 1.000 1.000 0.903 0.908

10 209�208 1.000 1.000 1.000 1.000 1.000 0.906 0.893

*The number at the left of ‘‘�’’ is the DOY of the predicted NDVI and the number at the right of ‘‘�’’ is the DOY of the HJ-1 NDVI.

Table 5. Correlation coefficients for all land cover types of the predicted NDVI and validation NDVI.

No. DOY�category* Meadow Alpine meadow Shrub Forest Irrigated land Bare land Desert

1 129�125% 0.857 0.874 0.934 0.817 0.897 0.756 0.828

2 137�139% 0.672 0.165 0.885 0.302 0.793 0.832 0.745

3 161�159% 0.739 0.305 0.819 0.508 0.838 0.889 0.902

4 161�164% 0.673 0.060 0.851 0.407 0.780 0.922 0.434

5 169�171% 0.772 0.359 0.777 0.520 0.779 0.885 0.789

6 177�174% 0.846 0.893 0.942 0.463 0.851 0.949 0.903

7 177�175% 0.915 0.236 0.954 0.644 0.916 0.955 0.937

8 185�181% 0.919 0.278 0.961 0.575 0.932 0.963 0.912

*The number at the left of ‘‘�’’ is the DOY of the predicted NDVI and the number at the right of ‘‘�’’ is the DOY of the HJ-1 NDVI.

Vol. 37, No. 6, December/décembre 2011
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A simple average of the various different measurements

substantially increased the SD of the field pixel data, and

therefore the mean value was used as the main reference

point for the pixel NDVI. From these results, it was

apparent that the predicted NDVI time series provided a

good description of dynamic changes in vegetation. The

predicted NDVI was more strongly influenced by the HJ-1

NDVI used in CC. The R2 between the field NDVI mean

values and the corresponding pixel NDVI values was 0.8.

Comparison with STARFM

As visualized in Figures 7a and 7b, vegetation changes in

space and time were consistent with the data predicted by

STARFM and CC. Image validation was also conducted.

R2 values were calculated for all land cover types, but are

not shown here. Compared with Table 5, meadow and

forest have low R2 values which may be due to cloud

contamination. The R2 of the remaining land cover types
appeared to show the same overall trend, but were a little

lower than the corresponding values in Table 5. This may

have occurred because STARFM introduced more coarse-

resolution information that made the high-resolution de-

tails fuzzy. When the acquisition time of HJ-1 is far from

that of MODIS or when the weighting or window size is

not suitable, ‘‘patches’’ of the size of a MODIS pixel will

appear, as shown in Figure 10. Repeated efforts are needed
to reduce the ‘‘patches’’ by adjusting the window size and

the weights of neighboring pixels depending on the

heterogeneity of the landscape.

Large-area application

The CC method was used in several plots in China,

including the rainy south, the arid and semiarid west, and

Figure 8. Mean and standard deviation (SD) differences for each land cover type from the predicted NDVI and the HJ-1 NDVI on

closest DOYs: (a) mean difference, (b) SD difference. Integers (1,2,. . .,8) refer to the DOY listed in Table 5. For example, 1 refers to

DOY � 129�125; 129 is the DOY of the predicted NDVI, and 125 is the DOY of the HJ-1 NDVI.
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the temperate middle region. The NDVI was also input to

another algorithm to produce time-series vegetation frac-

tions for these plots. In the rainy south plot, only one HJ-1

CCD image was obtained, but the results were reasonable

because the vegetation there is evergreen. Comparison with

the field vegetation fraction obtained by the traditional visual

method yielded good results, as shown in Figure 11, which

indicates that from another vantage point the CC method can

provide a good description of vegetation. The NDVI

produced formed part of the input data to the soil erosion

model used in the Chinese national soil and water conserva-

tion status investigation in 2011. Errors caused by the 30 m

Figure 9. Comparison of the 8 day, 30 m predicted NDVI time series with the in situ NDVI.

Figure 10. ‘‘Patches’’ in the NDVI generated by STARFM: (a) NDVI produced by STARFM, DOY �265, (b)

NDVI produced by CC, DOY �265.
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land cover map were considered as misclassifications and also

included a registration error if the map was generated from

other resources. Other errors arose from a small amount of

cloud contamination in the HJ-1 CCD images selected.

Conclusions

HJ-1 CCD has an enormous advantage and superior

capabilities in quantitative remote sensing because of its

high spatial resolution. However, noise introduced by

cloud contamination and atmospheric variability and

other constraints prevents it from being used in applica-

tions that need time series data. The MODIS composited

reflectance product offered rich temporal information

about land surfaces, but its coarse resolution made the

information insufficient, especially for heterogeneous land-

scapes. To use HJ-1 CCD spatial information and

MODIS temporal information at the same time, the CC

data assimilation method was used to combine the two

kinds of data resources to produce a nadir-observed

dataset with the CCD spatial resolution and NBAR

temporal resolution as if such a satellite is present and

observing at nadir. NBAR NDVI was used to provide the

multiyear average vegetation growing state, and HJ-1

NDVI was used to adjust this multiyear state to

approximate the current state even the future state,

because the time series 30 m NDVI can be generated as

long as there is HJ-1 data. The MODIS multiyear average

NDVI time series and the HJ-1 NDVI of each category

were considered as the background field values and the

observation values respectively. The data generated by the

CC method as well as the validation using in situ data

and HJ-1 CCD images indicated good results.

Using the MODIS product, it is hard to obtain high-

quality data after quality control for weather conditions,

and therefore the STARFM method is limited; otherwise,

much noise will be introduced into the predicted data.

Another approach is to reconstruct a high quality MODIS

dataset according to some reconstruction method, which is

a time-consuming task, and moreover, different reconstruc-

tion methods have different disadvantages. CC can avoid

such problems because its background field values are

extracted from several years of data; even if the data are

not of high quality, a simple Savitzky�Golay filter (Chen,

2004) can be applied to the average NDVI time series to

provide a less noisy background.

Only NBAR and HJ-1 CCD reflectance were used in our

study. In practice, other MODIS reflectance products or VI

products can be used, and other sensors similar to MODIS

and HJ-1 can be substituted or combined according to

requirements. Moreover, other kinds of land surface para-

meters such as reflectance and LAI can be generated using

this method.
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