1. 总编号为测量年的统一编号,如:17-001(2017年的第一个测点),野外编号为单次野外编号。 2. 时间:测量时的北京时间,如: 2017/08/01 13:25(2017年8月1日13时25分)。 3. 地理位置:测量点的经纬度,如: 29.6584,101.0884(北纬29.6584°,东经101.0884°),野外由Garmin 63sc型GPS测定。 4. 海拔:测量点的绝对海拔高程,如4500m (海拔4500米),野外由Garmin 63sc型GPS测定,精度为1 m。 5. 实测植被盖度(%):在野外用样方(1000 m*1000 m)测得。 6. 大气压:野外用DPH-103型智能数字温湿度大气压计测得,如651.7kPa,精度:0.1 kPa。 7. 气温:野外用DPH-103型智能数字温湿度大气压计测得,如15.61℃,精度:0.01℃。 8. 相对湿度:野外用DPH-103型智能数字温湿度大气压计测得,如79.1%,精度:0.1%。 9. 相对氧含量:野外用TD400-Sh-O2便携式氧气检测仪测得,如20.16%,精度:0.01%。 其中,17-001至17-065采样点的海拔通过Garmin Oregon 450型GPS测定, 精度为1 m;大气压通过卡西欧prg-130gc型气压计测定, 精度为5 hPa;氧气相对含量利用CY-12C型数字测氧仪测得,0-50.0%量程,分辨率为0.1%,精度为±1%。
史培军
本数据为青藏高原CHNAB005号网格植物多样性与分布数据,包含此网格中植物的中文名、拉丁名、纬经度、海拔、采集编号、分子材料份数、标本份数、行政区划、小地点、采集人、采集时间及创建者等信息。该数据获取自e科考网站(http://ekk.kib.ac.cn/web/index/#/),并部分完成鉴定。此数据已涵盖本区系中植物名录和具体分布信息。此数据既可用于本区域的区系性质研究,亦可用于探讨本区域植物水平和垂直梯度格局等。 较去年不同的是,今年科考数据最多的网格发生了变化,可能有受到疫情或者环境的影响。
邓涛
青藏高原1km分辨率可利用风能资源分布数据是以数值模拟得到的青藏高原地区多年年平均风速为基础,考虑地形、水体、城镇等土地利用对风能开发的制约和限制,综合得到的非常丰富、丰富、较丰富和一般几个风能资源等级。根据地形坡度、土地利用类型来设置土地可利用率,并将城镇周边3km范围扣除,将土地可利用率按照0.2的间隔划分成从0到1的5个区间,再将年平均风速大小划分成4个区间,通过土地利用可利用率和风速两个因子的组合得到风能资源的等级划分。数据主要用于风能资源详查和风电场宏观选址。
朱蓉, 孙朝阳
青藏高原是亚洲众多主要河流的源头,为亿万人口提供生活必需的水源,被称为“亚洲水塔”。亚洲水塔的主要补给水源为青藏高原地区的降水,其中高原低涡是青藏高原上重要的降水系统之一。由于青藏高原地形复杂、观测资料匮乏,对高原低涡的气候和结构特征及其形成和变化机制的认识仍然存在很多不足之处。本数据集利用多套再分析资料和高原低涡的客观识别方法,得到了一套长时间序列高原低涡数据集,包括高原低涡的位置、半径、强度、生命史和移动路径等特征,本数据集可用于高原低涡的气候特征分析、高原低涡对降水影响、高原低涡生成发展和移出机制研究等。数据集使用的再分析数据有:NCEP1(NCEP/NCAR),NCEP2(NCEP/DOE),ERA-Interim,ERA-40,ERA-5,CFSR,MERRA2,JRA55,NCEP FNL,CRA40等共10套再分析数据,其中NCEP1和NCEP2的分辨率较低,得到的高原低涡不适用作为气候特征分析。
林志强, 郭维栋
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
(1)数据内容为扎拉水电站高边坡环境监测数据,包含了扎拉水电站高边坡自动化监测的环境数据,对扎拉水电站边坡的稳定性具有一定的指导意义,可为扎拉水电站的防灾减灾提供数据支撑;(2)数据来源于自动化监测设备的自动传输,并通过监测预警平台的软件自动解译和处理,最终生成excel表格中的数据;(3)数据传输稳定,质量较高,可为扎拉水电站边坡稳定性提供依据;(4)数据可以反映扎拉水电站高边坡的环境变化情况,应用前景广泛。
徐昆振
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
在共享社会经济路径(SSP)5-8.5情景下4个CMIP6模式2015-2100年的模拟结果。选取标准为这四个模式水平分辨率均小于1°,且均有日数据。从原始模拟结果中提取了8个代表极端气候的变量,分别是日最高气温的极高值(TXx)、日最低气温的极高值(TNx)、日最高气温的极低值(TXn)、日最低气温的极低值(TNn)、连续干旱日数(CDD)、连续湿润日数(CWD)、降水强度(SDII)和强降水日数(R20mm)。数据时间分辨率为年,空间范围为青藏高原地区,时间范围为2015-2100年。
张冉
数据为青藏高原地区FY-4A地面太阳辐射产品,包括GHI\DNI\DIF.FY4地表太阳入射辐射反演算法涉及的通道包括成像仪可见光、近红外和短波红外的6个通道:CH1(0.45-0.49微米)、CH2(0.55-0.75微米)、CH3(0.75-0.90微米)、CH4(1.36-1.39微米)、CH5(1.58-1.64微米)、CH6(2.1-2.35微米)。算法依赖的回归模型需要事先通过辐射传输模拟和统计分析建立,回归模型定义了地表太阳入射辐射与成像仪多通道辐射观测之间的回归关系式,是太阳观测几何与最重要影响参数(云、气溶胶、水汽含量、地表反照率、地表海拔高度等)的函数。算法利用FY-4卫星成像仪通道1至通道6的短波辐射观测,来获取大气和地表的瞬时状态参数信息,同时由地表高程数据获取地表海拔高度信息。在确定瞬时的大气和地表状态后,结合太阳角度和观测角度,根据事先建立的回归模型数据,进行多维线性插值,获取地表太阳入射辐射反演产品。
申彦波, 胡玥明, 胡丽琴
青藏高原作为亚洲“水塔”为亚洲主要河流提供水资源。由生物质和化石燃料燃烧排放的BC气溶胶对辐射具有极强的吸收作用,进而对地球系统的能量收支和分布具有重要的影响,是气候环境变化不可忽视的影响因子。青藏高原周边地区排放的黑碳气溶胶经大气环流可被传输至高原内部,并沉降到雪冰表面,对降水和冰川物质平衡产生重要影响。分别在青藏高原5个台站架设黑碳仪,使用Aethalometer在线测量大气黑碳含量,数据时间分辨率:逐日.这对评估黑碳对青藏高原的气候环境影响和大气污染物的跨境传输提供数据基础。此数据是先前发布的《青藏高原大气黑碳含量5个站点观测资料(2018)》和《青藏高原大气黑碳含量5个站点观测资料(2019)》的更新。 5个站点信息如下: 纳木错:30°46'N, 90°59'E, 4730 m a.s.l 珠峰站:28.21°N, 86.56°E, 4276 m a.s.l 藏东南:29°46'N, 94°44'E, 3230 m a.s.l 阿里站:33.39°N, 79.70°E, 4270 m a.s.l 慕士塔格:38°24’N, 75°02’E, 3650 m a.s.l
王茉
本数据集包括藏东南站、阿里站、慕士塔格站、珠峰站和纳木错站的大气气溶胶颗粒物的PM2.5质量浓度(单位为μg/m3)。气溶胶PM2.5细颗粒物是指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物。它能较长时间悬浮于空气中,对空气质量和能见度等有重要的影响,其在空气中含量浓度越高,就代表空气污染越严重。PM2.5的浓度特性数据以每5 min获取一组数据的频率进行产出,能实现小时、昼夜、季节和年际等不同时间尺度气溶胶质量浓度的分析,这为青藏高原地区不同位置的气溶胶质量浓度在不同时间尺度上的变化及其影响因素分析,以及当地空气质量评价,提供了重要的数据支撑。该数据为已发布数据《青藏高原不同站点气溶胶颗粒PM2.5浓度数据集(2018和2019)》的更新。
邬光剑
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
1)数据内容(包含的要素及意义):高寒网19个站(藏东南站、纳木错站、珠峰站、慕士塔格站、阿里站、格尔木站、天山站、祁连山站、若尔盖站(共2个点,西北院和成都生物所)、玉龙雪山站、那曲站(含3个站点,青藏所、西北院和地理所)、海北站、三江源站、申扎站、拉萨站、青海湖站)2020年青藏高原气象观测数据集(气温、降水、风向风速、相对湿度、气压、辐射和通量等数据) 2)数据来源及加工方法:高寒网19个站实地观测Excel格式 3)数据质量描述:站点日分辨率 4)数据应用成果及前景:在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。另外,该数据集是对中国高寒区地表环境与观测网络气象数据(2019)的更新。
朱立平
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
数据集包含西藏墨脱地区墨脱国家气候观象台(29°18’N,95°19’E,海拔1305.0米)的大气气溶胶PM10, PM2.5 和PM1数据以及环境空气温湿度。观测仪器为GRIMM-180 环境颗粒物分析仪,观测时间为2021年4月8日至2021年5月22日,数据时间分辨率为10秒,仪器工作过程中产生的异常数据已经剔除。在观测期间,由于受南亚季风影响,空气湿度较大,观测场地周边受人为活动干扰较少。本数据集为研究藏东南地区大气粉尘气溶胶物理特性、时空变化特征和来源解析提供了基础数据。资助项目:第二次青藏高原综合科学考察研究任务六专题二(2019QZKK0602)。
黄建平, 张镭, 田鹏飞, 史晋森
数据集包含西藏墨脱地区墨脱国家气候观象台(29°18’N,95°19’E,海拔1305.0米)的大气气溶胶在450nm、550nm和700nm波段处的散射系数数据。观测仪器为积分浊度计,观测时间为2021年4月8日至2021年5月22日,数据时间分辨率为10秒,仪器工作过程中产生的异常数据已经剔除。在观测期间,由于受南亚季风影响,空气湿度较大,观测场地周边受人为活动干扰较少。本数据集为研究藏东南地区大气粉尘气溶胶物理特性、时空变化特征和来源解析提供了基础数据。资助项目:第二次青藏高原综合科学考察研究任务六专题二(2019QZKK0602)。
黄建平, 张镭, 田鹏飞, 史晋森
数据集包含西藏墨脱地区墨脱国家气候观象台(29°18’N,95°19’E,海拔高度1305.0米)的大气黑碳气溶胶浓度的逐小时数据。观测仪器为AE31,观测时间为2021年4月9日至2021年5月20日,采样过程中产生的异常数据已经剔除。在观测期间,由于受南亚季风影响,空气湿度较大,观测场地周边受人为活动干扰较少。本数据集为研究藏东南地区大气黑碳气溶胶物理特性、时空变化特征和来源解析提供了基础数据。资助项目:第二次青藏高原综合科学考察研究任务六专题二(2019QZKK0602)。
黄建平, 张镭, 田鹏飞, 史晋森
本数据包括第二次青藏高原野外综合科学考察的影像资料。影像资料内容包括科考途中自然保护区采集样方的样地照片,云南西北部和四川西部自然保护区的森林生态系统,草地生态系统,湖泊生态系统的影像,植被情况,野生动植物生境,保护区内的动物,植物和真菌类数据。此外,影像数据还包括科考的样品采集过程和社区调查中科考队员入户调查以及与当地保护部门访谈的影像资料。数据来源于无人机和相机拍摄,可为科学研究提供佐证和参考。
苏旭坤
全新世单独轨道参数变化模拟结果(2019-2020)数据集是利用地球系统模式CESM模式(水平分辨率:大气与陆面模块约为2°、海洋与海冰模块约为1°),开展考虑地球轨道参数变化的全新世瞬变模拟试验。空间分辨率为2°;空间范围:北:50°N,南:20 °N,西:60 °E,东:130°E;地域范围为:欧亚大陆;时间范围为全新世。模拟结果可用于分析全新世单独轨道参数变化影响下欧亚大陆西风季风等变化的分析研究。
张冉
本数据为降水数据,是热带降水测量任务TRMM(Tropical Rainfall Measuring Mission)逐月降水产品TRMM 3B43,融合青藏高原为主主体的范围区域(25~40°N;73~105°E)内332个气象站点降水数据,该气象站降水数据源自中国气象局国家气象信息中心。本数据集采用站点3°插值优化变分订正方法计算获得的再分析数据集。时间跨度为1998年1月至2018年12月的月样本资料,空间覆盖范围是25~40°N;73~105°E,空间分辨率为1°*1°。
徐祥德, 孙婵
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件