归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。藏东南1KM植被指数(NDVI)空间分布数据集是在MODIS(https://ladsweb.modaps.eosdis.nasa.gov/)16天1KM地表反射率数据(MOD13)基础上,采用最大值合成法生成的2000年以来的月度植被指数数据集。该数据集有效反映了藏东南地区在空间和时间尺度上的植被覆盖分布和变化状况,对植被变化状况监测、植被资源合理利用和其它生态环境相关领域的研究有十分重要的参考意义。月度NDVI数据为每月NDVI数据数值的最大值,数据获取时间为2000年2月—2018年12月。下载的数据为GRID格式,空间分辨率为1km。
王浩
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
本数据集是2017年8月-9月于阿里地区采集的典型地物光谱测量数据。高光谱数据使用ASD便携式地物光谱仪FieldSpec 4测量。进行光谱测量时基本为光线稳定的晴天,测量时记录了云量情况。测量前使用白板进行校准;并使用GPS记录经纬度坐标;记录了测量的植被类型;同时测量了周围土壤的光谱数据。地物光谱仪记录的DN值为.asd格式文件,可使用ViewSpecPro软件读取,并利用EXCEL结合白板数据转换为反射率。光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 张炳华
本植被含水量数据集来源于滦河流域土壤水分遥感试验中的地面同步观测,包括:(1)70 km×12 km 典型试验区(南北航线)的17个样区;(2)165 km×5 km复杂试验区(东北—西南航线)的8个样区;(3)地基微波辐射计观测的6个样区。地物类型包括草地、玉米、土豆、莜麦和胡萝卜。数据测量时间为2018年9月13日到2018年9月26日。植被含水量的测量方法为收获法,行播作物按照长度进行收获,草地按照面积进行收获。本数据集经过称重、烘干和植被含水量计算等步骤处理得到。
郑兴明, 姜涛
地表反照率是地表能量平衡的重要参量之一。本数据集为2020年植被生长季(6-10月)逐月的黑河流域典型站点无人机遥感地表反照率数据(花寨子站8月份的数据由于实验开展的技术问题缺失)。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.029。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
刘绍民, 周纪, 董惟琛
本数据为青藏高原地区季度合成卫星遥感影像集,通过对Sentinel-2表观反射率时间序列产品进行去云合成处理得到,含可见光和近红外共4波段,空间分辨率约为10米。每年按1月-3月、4月-6月、7月-9月、10月-12月分为4个季度,综合利用Sentinel-2数据的可见光波段、卷云波段、气溶胶波段及近红外波段信息得到各时相影像的云掩膜,并按中位数原则对一个季度内所有掩膜后的影像进行合成,得到青藏高原地区的无云卫星遥感影像。
龙腾飞
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
瓜达尔深水港位于巴基斯坦俾路支省西南部瓜德尔城南部,在巴基斯坦靠近伊朗一侧,东距卡拉奇约460km,西距巴基斯坦伊朗边境约120km,南临印度洋的阿拉伯海,向西则是霍尔木兹海峡和红海,与阿曼首都马斯喀特(Muscat)遥遥相对,是一个极具战略地位的海港。 本数据为瓜达尔及其周边土地覆盖数据,数据源于GlobeLand30 (Chen, 2014),数据空间分辨率为30米,数据格式为tiff。 GlobeLand30数据集研制所使用的分类影像主要包括美国陆地资源卫星(Landsat)的TM5、ETM+、OLI多光谱影像和中国环境减灾卫星(HJ-1)多光谱影像,采用基于像元对象知识(POK-based)的分类方法 (Chen, 2015),总体精度为83.50%,Kappa系数0.78 (Xie, 2015)。
吴骅
该数据集是NOAA的 Advanced Very High Resolution Radiometer (AVHRR)传感器获取的长时间序列的NDVI数据。该数据集时间范围是1982年至2015年。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。每半个月合成一幅NDVI影像。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率为8km,时间分辨率为2周,时间范围为1982年至2015年。数据转系系数为10000, NDVI = ND/10000。
NOAA
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2018年10月。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
该数据集是SPOT卫星上的VEGETATION传感器获取的长时间序列的NDVI数据。该数据集时间范围是1998年5月至2013年。为了去除NDVI数据中的噪声,进行了最大化合成。每10天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率1km,时间分辨率是10天,时间范围:1998年5月至2013年12月。
Image Processing Centre for SPOT-VGT
该数据集是SeaWiFS获取的长时间序列的NDVI数据。该数据集时间范围是1997年9月至2007年。为了去除NDVI数据中的噪声,进行了最大化合成。每15天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率4km,时间分辨率是15天,时间范围:1997年第256天至2007年第365天。
Charles R. Mcclain
该数据集包含了黄河源、长江源、澜沧江三个源区的最大值合成法生产的NPP产品数据。MOD13Q1、MOD17A2以及MOD17A2H遥感产品数据来自于NASA网站(http://modis.gsfc.nasa.gov/)。MOD13Q1产品的分辨率为250 m, 16 d合成产品。MOD17A2和MOD17A2H产品数据都是8 d合成产品, MOD17A2的分辨率为 1000 m, MOD17A2H的分辨率为500 m。最终合成的MODIS NPP产品的分辨率为1km。 下载的MOD13Q1、MOD17A2、MOD17A2H遥感数据产品, 格式为HDF, 该数据已经过大气校正、辐射校正、几何校正和去云等处理。1)MRT投影转换。将下载的数据产品进行格式和投影转换, 将HDF格式转换为TIFF格式, 将投影转换为UTM投影, 输出250 m分辨率的NDVI、250 m分辨率的EVI、1000 m和500 m两种分辨率的净光合PSNnet。2)MVC最大值合成。将与地面实测数据同期的NDVI、EVI、PSNnet采用最大值合成, 得到与实测数据对应的值。采用最大值合成法可以有效减少云、大气、太阳高度角等的影响。3)基于NASA-CASA模型生成NPP年值。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
耿丽英, 家淑珍, 李艺梦, 马明国
植被叶绿素含量的测量是为了获取不同EC站点以及不同类型植被叶绿素的含量,并实现遥感反演的叶绿素产品的真实性检验。 观测仪器: 野外采样,室内丙酮萃取法测量。 测量方式: 为了分析株高对叶绿素含量的影响,根据玉米株高记录选择不同的样方进行采样,总共选择了11个玉米样方。为了比较不同植被类型的叶绿素含量,又选取了通量矩阵内EC1下的三种蔬菜类型以及湿地的芦苇样方。总共选取了19个不同的样方进行分析,所采样方交于河西学院生命科学学院实验室,进行叶绿素萃取,分别提取出所选样方的叶绿素a、叶绿素b以及总叶绿素的含量。 数据内容: 叶绿素a、叶绿素b以及总叶绿素的含量 观测时间: 2012年7月8号
家淑珍
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2014年5月10日开始,9月11日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.1.2其它四个站:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 其它四个站:2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.1.2芦苇:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
于文凭, 耿丽英, 李艺梦, 谭俊磊, 马明国
2008年7月22日,针对7月23日的LandSat TM数据,在阿柔加密观测区开展了狼毒和棘豆盖度的加密调查,主要通过照相法观测狼毒覆盖度,并开展样方调查工作。本数据可为TM卫星数据反演毒草覆盖度提供基本的地面验证数据集。 1. 照相法观测狼毒覆盖度。样方规格:51m×51m,针对不同的覆盖度共计调查了10个样方,每个大样方分为17×17个3m×3m的格子。在格子角上采用普通相机拍照,每个样方拍摄324张。照相:使用的相机为尼康D80,标配18-135mm镜头,照相高度为1.5米,正对地面向下照。 2. 样方调查数据存储:Excel格式表格。主要调查的项目有:GPS点号、物种、株数、高度、覆盖度、生物量。(1)GPS点号用GARMIN GPS 76记录。(2)物种采用人工识别的方法。(3)株数采用人工数的方法。(4)高度用卷尺测量,4-5个重复。(5)覆盖度采用人工估计的方法。在0.5m×0.5m的大格子内细分为100个小格,数其中狼毒所占格数。(6)生物量取0.5m×0.5m样品,称鲜重,杀青后烘干,称干重。 该数据集包括:同步TM影像文件夹,样方覆盖度调查照片文件夹,GPS记录点文件、覆盖度文件,样方调查表文件(包括株高和物种方格数)。
曹永攀, 李红星, 刘超, 马明国, 钱金波, 冉有华
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件