该数据集包含了2021年1月1日至2021年10月9日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日的青海湖流域水文气象观测网温性草原气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集提供了位于拉萨市区北郊的夺底沟径流实验站的流量、降水、气温监测数据。其中,径流监测站点2处,提供了2019年6月至12月的径流数据,数据步长为10分钟;降水监测站点5处,提供了2018-2021年的降水数据,数据步长为1日;气温监测站点8处,提供了2018-2021年的气温数据,数据步长为30分钟。径流数据、降水和气温数据均为实测数据。该数据集可以为青藏高原的水文和气象过程研究提供数据支撑。
刘金涛
该数据集包含了黑河流域地表过程综合观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为RR-RSS460的接收端和BLS900的发射端,南塔为RR-RSS460的发射端和BLS900的接收端。观测时间为2021年1月1日至2021年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度13.0m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国
青藏高原及周边地区孕灾、致灾、承灾数据集包含了地貌数据、归一化植被指数数据、年均气温与降雨数据、承灾价值等级数据,覆盖656万平方公里的范围。该数据集主要是为了进行灾害、风险评价而准备。由于覆盖范围巨大,地貌数据采用了150m空间分辨率,其他数据采用了1000m空间分辨率。地貌、植被指数、气温降雨数据主要通过加工开源数据生产,承灾价值等级数据为叠加计算生产,综合考虑了人口数据、夜间灯光指数、建筑物、地表覆被类型。
唐晨晓
本数据集的制备是基于提出的针对藏东南冰川地区的全天候地表温度数据降尺度方法,通过分析全天候地表温度与其时空影响因子高程、地表覆盖类型、植被指数、积雪指数、地表反射率等数据之间的关系,构建了全天候地表温度的降尺度模型,将全天候地表温度产品的空间分辨率由1 km提升至250 m。通过地面站点实测数据进行验证,验证结果表明降尺度地表温度在站点处的RMSE白天与夜间分别为2.25 K、2.16 K左右,较原始1 km地表温度产品精度提升约0.5 K。图像质量指数的计算结果表明降尺度地表温度不仅获得了大量的细节热信息,而且在空间格局和幅值上与原始1 km地表温度保持了高度的一致性。本数据集对藏东南冰川地区高分辨率全天候地表温度生成和灾害监测具有一定的意义。
周纪, 黄志明, 钟海玲, 唐文彬
波密县天摩沟地面气象数据是由布置在帕隆藏布流域天摩沟中游的气象监测点采集获得的,数据采集时间为2020年。数据主要内容包括天摩沟雨量和气温观测数据,雨量数据通过HOBO雨量计采集得到,HOBO雨量计为翻斗式雨量计,每0.2mm降雨量记录为一次事件,输出记录的事件次数,事件次数乘以0.2mm即为雨量值;气温由数据记录仪中内置的一个10位分辨率温度传感器测量,采集方式为每小时采集存储一次,可以获得气温小时均值。该数据质量可靠、精度较高,可用于反映天摩沟雨量和气温实时变化动态,监测泥石流起动临界条件,预报该地区未来泥石流事件发生的可能性。
侯伟鹏
数据采集于海北高寒草甸生态系统研究站样地(101°19′E,37°36′N,海拔3250m),位于青藏高原东北隅祁连山北支冷龙岭东段,高寒草甸是该地区主要的植被类型。数据记录了高山植物冠层上方光照、空气温湿度以及风温风速数据。通过LI-190R 光合有效辐射传感器(LI-COR,Lincoln NE,USA)和LR8515数据采集器(Hioki E. E. Co., Nagano, Japan)记录高山植物冠层上方辐射强度,记录间隔为每秒一次。用S580-EX温湿度记录仪(深圳华图)以及万向风速记录仪(北京天建华仪)记录空气温湿度以及风温风速的日动态,记录间隔为每三秒一次。记录时间为从北京时间7月13日10点至8月17日21点,由于每日需要使用USB存储时间以及更换电池,所以每日有3-5min的数据缺失,缺失的时间段不固定。目前该数据暂未发表。通过研究该数据可以进一步探讨高山植物叶片所处的微环境以及可能的对叶片生理反应的影响。
唐艳鸿, 郑天宇
1) 数据内容(包含的要素及意义):数据包含气温(℃)、降水(mm)、相对湿度(%)和风速(m/s)和辐射(W/m2)四个指标的日值。 2) 数据来源及加工方法:气温、相对湿度、辐射和风速为日均值,降水为日累计值;数据采集地点为色季拉山东坡林线附近:29°39′25.2″N,94°42′25.62″E,4390m;下垫面为自然草地;采集器型号:Campbell Co CR1000,采集间隔时长:10分钟。数字化自动采集数据。气温和相对湿度仪器探头为HMP155A;风速传感器为05103;降水为TE525MM;辐射为Li200X。 3) 数据质量描述:气温、相对湿度和风速原始数据为10分钟一个的平均值,降水为10分钟的累积值;分别通过算术平均或求和得到日平均气温、相对湿度、降水量和风速。由于传感器限制,冬季降水量可能有一定的误差。 4) 数据应用成果及前景:此数据是已有数据《色季拉山气象数据(2007-2017)》和《中科院藏东南站色季拉山东坡林线基本气象数据(2018)》的更新,数据时间尺度跨度大,方便大气物理、生态、大气环境等方面的科学家或研究生使用。每年会不定期更新此数据。
罗伦
该数据集包含了2020年1月1日至2020年12月31日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
基于中国地面逐日气象要素数据集、全国地理基础数据、自然环境基础数据集,运用像元二分模型、密度分析、RclimDex、非平稳标准化降水蒸散指数(NSPEI)和双线性内插法等多种指标计算方法计算了横断山区的极端降水、极端气温、干旱强度、干旱频率等多种指标。该数据集包括横断山区的孕灾环境基础数据集、极端降水指标基础数据集、极端气温指标基础数据集、干旱强度和干旱频率基础数据集。该数据集可为区域内极端高温、降水和干旱风险评估提供基本的指标体系。我们得出横断山区内90%以上站点的极端气温暖指数显著上升,极端气温冷指数显著下降。南北气温差异显著,以青藏高原为界,北部气温日较差大,平均在13.83℃,南部气温日较差小,平均为11.38℃,南部平均的冰冻日数在1d左右。随着重现期的增加,持续干燥期(CDD)大于110d的区域逐渐由西部扩大到金沙江下游流域;在不同重现期下,持续降雨期(CWD)和年降水总量(PRCPTOT)的高值区集中在西部和南部的边缘;北部的日最大降水量(RX1day)在不同重现期下变化不显著,在60mm以下;最低气温极小值(TNn)和最高气温极大值(TXx)在空间分布上北低南高,40℃以上的高温普遍发生在南部的干旱河谷。
孙鹏
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
Felix Nieberding, 马耀明, Christian Wille, Lukas Lehnert, Yuyang Wang, Philipp Maurischat, Weiqiang Ma, Torsten Sachs
该数据为中国科学院藏东南高山环境综合观测研究站2016年在色季拉山西坡山顶架设自动气象站数据(AWS,Campbell公司),地理坐标为北纬29.5919,东经94.6102,海拔4640m,下垫面为高山草地。 数据包括气温(℃)、相对湿度(%)、风速(m/s)和气压(mb)日算术平均数据和降水的日累计值,原始数据2018年10月之前为30分钟一个平均值,此后为10分钟记录一个平均值。温湿度采用HMP155A温湿度探头测定,降雨量仪器型号为RG3-M,大气压力传感器探头为PTB210,风速传感器为05103,这些探头离地面2 m。数据质量方面:剔除了明显异常值,2019年上半年积雪导致电池损坏,数据有缺失,缺失的气温数据利用了附近站点4390m气温拟合回归矫正,已在数中标据黄,使用时请注意;降水量的监测从2019年8月开始。该数据站点为藏东南地区较高海拔的气象站,后续会不定期更新,可供研究生态、气候、水文、冰川等的科研工作者使用。
罗伦
该数据为中国科学院藏东南高山环境综合观测研究站2018年在易贡藏布流域架设自动气象站数据(AWS,Campbell公司),地理坐标为北纬30.1741,东经94.9334,海拔2282m,下垫面为草地。 数据包括气温(℃)、相对湿度(%)、风速(m/s)、水汽压(Kpa)和气压(mb)日算术平均数据和降水的日累计值,原始数据为10分钟记录一个平均值。温湿度采用HMP155A温湿度探头测定,降雨量仪器型号为TB4,大气压力传感器探头为PTB210,风速传感器为05103,这些探头离地面2 m高。数据质量方面:原始数据质量较好,缺失较少。该数据站点为青藏高原较低海拔的气象站,后续会不定期更新,可供研究气候、水文、冰川等的科研工作者使用。
罗伦
印度洋是海气相互作用非常活跃的区域,它与太平洋共同构成的“印度洋-太平洋暖池”是全球海温最高、体积最大的暖水区,不仅通过季风将大量的热量和水汽输送到热带外海域,而且热带印度洋上空的强对流也在全球气候变化中扮演重要的角色。研究印度洋本身的热力性质以及海气相互作用,需要准确、可靠的格点化三维海温数据集。 本数据集由印度洋三维格点温度构成,其水平范围覆盖印度洋(30°E-105°E,45°S-30°N),垂直方向从表层到2000米共41层,水平分辨率为1/4°,时间分辨率是逐月。数据采用“表层-次表层”反演技术和最优插值方案制作。首先,“表层-次表层”反演过程使用机器学习算法(广义神经网络)将遥感的海表面温、海表面高度异常等信息投影到次表层,形成反演剖面(或“伪”剖面)。进一步,挑选高质量的反演剖面,补充到英国气象局提供的海洋次表层现场剖面数据库中,使用最优插值方案进行融合,得到最终的融合数据集。通过与现有的IAP、EN4以及Ishii数据集相比,该数据集能够抓住印度洋主要的海温变化特征,高分辨率版本可以提取更多中小尺度信号。该数据集分辨率高,融合了现场剖面和遥感资料的优势,有望在印度洋海气相互作用方面发挥作用。
王公杰, 赵亮
通过近30年的研究,人们对青藏高原,特别是喜马拉雅山以北地区降水稳定同位素(2H和18O)的气候控制作用有了充分的认识。然而,尼泊尔(喜马拉雅山以南)对降水稳定同位素的控制知识还远远不够。 本研究描述了2016年5月10日至2018年9月21日期间尼泊尔加德满都降水稳定同位素的季节内和年度变化,并分析了对降水稳定同位素的可能控制因素。所有样品均位于尼泊尔首都加德满都(27°42′N, 85°20′E),平均海拔约1400m。并结合了2001年1月1日至2018年9月21日的气象资料,给出了降水量(P)、温度(T)和相对湿度(RH)的值。
高晶
本套数据集连接了CSR RL06 Mascon和JPL RL06 Mascon数据在GRACE和GRACE-FO之间的间断期。以中国区域作为研究区域,数据集包括“Decimal_time”, “lat”, “lon”, “time”, “time_bounds”, “TWSA_REC”和“Uncertainty”7个参数。其中“Decimal_time”对应为十进制时间,2002年4月-2019年12月份一共191个月(GRACE数据163个月,GRACE-FO数据17个月,GRACE与GRACE-FO间断期11个月,一共191个月。我们并未弥补GRACE或GRACE-FO各自数据之间存在的个别月份的缺失数据);“lat”对应为数据纬度范围;“lon”对应为数据经度范围;“time”对应为数据从2002年1月1日起的年积日;“time_bounds”;对应为数据每个月开始日期和结束日期所对应的年积日。“TWSA_REC”为2002年4月-2019年12月份每个月的中国区域陆地水储量变化;“Uncertainty”是数据与CSR RL06 Mascon产品之间的不确定性。使用GRACE卫星重力数据CSR GRACE/GRACE-FO RL06 Mascon Solutions (version 02)、中国逐日网格降水量实时分析系统(1.0版)数据、CN05.1温度数据等数据集,通过建立降水重构模型,并考虑Mascon产品的季节项和趋势项,得到中国区域基于降水重构陆地水储量变化数据集。数据质量整体较好,全国大部分区域的误差在5cm以内。本数据集补充了GRACE与GRACE-FO卫星中间一年多的数据间断期,为中国区域长期的陆地水储量变化分析提供了完整的时间序列。本数据集与CSR RL06 Mascon产品一样扣除了2004.0000 - 2009.999间的平均值,所以可以直接提取本数据的第164-174个月(即2017年7月至2018年5月)的数据作为间断期的陆地水储量变化的估计。JPL RL06 Mascon数据间断期的构建与CSR RL06 Mascon方法是一致的。
钟玉龙, 冯伟, 钟敏, 明祖涛
(1)本数据集是申扎高寒湿地2016-2019年的碳通量数据集,包含空气温度、土壤温度、降水、生态系统生产力等参数。(2)该数据集以野外涡度相关实测数据为基础,采用国际上公认的涡度相关数据标准处理方法,基本流程包括:野点剔除-坐标旋转-WPL校正-储存项计算-降水同期数据剔除-阈值剔除-异常值剔除-u*校正-缺失数据插值-通量分解与统计。本数据集还包含了基于涡度相关数据集标定后的模型模拟数据。(3)该数据集已经过数据质量控制,数据缺失率为37.3%,缺失数据已采用插值方式补充。(4)该数据集对认识高寒湿地碳汇功能具有科学价值,也可以用于机理模型的矫正和验证等。
魏达
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件