Current Browsing: Precipitation


HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao mixed forest station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao mixed forest station between 12 July, 2013, and 31 December, 2013. The site (101.134° E, 41.990° N) was located on a tamarix and populous forest (Tamarix chinensis Lour. and Populus euphratica Olivier.) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 874 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45D; 28 m, north), wind speed and direction profile (034B; 28 m, north), air pressure (AV-410BP; in tamper box), rain gauge (52203; 28 m, south), four-component radiometer (CNR4; 24 m, south), two infrared temperature sensors (IRTC3; 24 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 24 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m), and soil moisture profile (ML2X; install on Dec. 7, 2013, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6 and -1.0 m). The observations included the following: air temperature and humidity (Ta_28 m; RH_28 m) (℃ and %, respectively), wind speed (Ws_28 m) (m/s), wind direction (WD_28 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm and Ms_100 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

Watershed allied telemetry experimental research,WATER: The doppler weather radar observation dataset of Zhangye National climate observatory from Mar to Jun, 2008

This dataset contains Doppler Weather Radar data from the Zhangye National Climate Observatory during the Watershed Allied Telemetry Experimental Research from 2008-03-08 to 2008-06-30. The latitude and longitude of the observation point are 100°16.8'E, 39°05.094'N; the altitude is 1378m. The main observation items are: rainfall, cloud physics, weather radar, etc.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of Huangzangsi station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huangzangsi station between 10 June, 2013, and 31 December, 2013. The site (100.192° E, 38.225° N) was located on a cropland (wheat) surface in the Huangzangsi village, Babao town, Qilian County, Qinghai Province. The elevation is 2612 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AD; 5 m, north), wind speed and direction profile (03001; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (IRTC3; 6 m, south, vertically downward), soil heat flux (HFT3; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), soil temperature profile (AV-10T; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), and soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix(Zhangye wetland station)

This dataset contains the automatic weather station (AWS) measurements from Zhangye wetland station in the flux observation matrix from 25 June to 21 September, 2012. The site (100.44640° E, 38.97514° N) was located in a wetland surface, which is near Zhangye city, Gansu Province. The elevation is 1460 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed (03002; 5 m and 10 m, towards north), wind direction (03002; 10 m, towards north), a four-component radiometer (NR01; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109ss-L; 0, -0.02, -0.04, -0.1, -0.2, and -0.4 m), and soil heat flux (HFP01; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), and soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, ℃). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (an observation system of Meteorological elements gradient of Sidaoqiao Superstation, 2014)

This dataset contains the data of the meteorological element gradient observation system of the Sidaoqiao superstation downstream of the Heihe Hydrometeorological Observation Network from January 1, 2014 to December 31, 2014. The site is located in Sidaoqiao, Dalaihu Town, Ejin Banner, Inner Mongolia. The underlying surface is Tamarix. The latitude and longitude of the observation point is 101.1374E, 42.0012N, and the altitude is 873m. The air temperature, relative humidity and wind speed sensors are respectively set at 5m, 7m, 10m, 15m, 20m and 28m, with 6 layers facing the north; the wind direction sensor is set at 15m, facing the north; the barometer is installed in the waterproof box. The tipping bucket rain gauge is installed at 28m; the four-component radiometer is installed at 10m, facing south; two infrared thermometers are installed at 10m, facing south, the probe orientation is vertically downward; two photosynthetically active radiometers are installed At 10m, facing south, and the probe is vertically upward and downward respectively; the soil moisture sensor is installed 2m on the south side of the tower body, and the soil heat flow plates (self-correcting type) (3 pieces) are buried in turn in the ground 6cm deep; The average soil temperature sensor TCAV is buried in the ground 2cm, 4cm; the soil temperature probe is buried in the ground surface 0cm and underground 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm; soil moisture sensors are buried in the underground 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm. Observed items include: wind speed (WS_5m, WS_7m, WS_10m, WS_15m, WS_20m, WS_28m) (unit: m/s), wind direction (WD_15m) (unit: degree), air temperature and humidity (Ta_5m, Ta_7m, Ta_10m, Ta_15m, Ta_20m, Ta_28m and RH_5m, RH_7m, RH_10m, RH_15m, RH_20m, RH_28m) (unit: centigrade, percentage), pressure (unit: hectopascal), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit: watts/square meter), surface radiation temperature (IRT_1, IRT_2) (unit: centigrade), up and down photosynthetically active radiation (PAR_U_up, PAR_U_down) (unit: micromol/square Msec), average soil temperature (TCAV) (unit: centigrade), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/square meter), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm) , Ms_120cm, Ms_160cm) (unit: volumetric water content, percentage), soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm) (unit: centigrade). Processing and quality control of the observation data: (1) ensure 144 data per day (every 10 minutes), when there is missing data, it is marked by -6999; From September 8, 2014 to November 8, due to the sensor problems, the data is missing; on May 9, 2014, the soil moisture probe was re-buried, and the data before and after is inconsistent; (2) eliminate the moment with duplicate records; (3) delete the data that is obviously beyond the physical meaning or the range of the instrument; (5) the format of date and time is uniform, and the date and time are in the same column. For example, the time is: 2014-9-10 10:30; (6) the naming rules are: AWS+ site name. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

2019-09-15

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix(automatic meteorological station of No.7)

This dataset contains the automatic weather station (AWS) measurements from site No.7 in the flux observation matrix from 28 May to 18 September, 2012. The site (100.36521° E, 38.87676° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.39 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (010C/020X; 10 m, towards north), a four-component radiometer (CNR4; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). One of the infrared temperature sensors (IRT_2) was adjusted to a zenith angle of 50° after 6 August. The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of flux observation matrix(No.11 automatic meteorological station) of he multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (2012)

This dataset contains the automatic weather station (AWS) measurements from site No.11 in the flux observation matrix from 2 June to 18 September, 2012. The site (100.34197° E, 38.86991° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1575.65 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 10 m), wind speed and direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (SI-111; 6 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and RH_5 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (an automatic weather station of Sidaoqiao cropland station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Sidaoqiao cropland station between 9 July, 2013, and 31 December, 2013. The site (101.134° E, 42.005° N) was located on a cropland (melon) surface in the Sidaoqiao, Dalaihubu Town, Ejin Banner, Inner Mongolia Autonomous Region. The elevation is 875 m. The installation heights and orientations of different sensors and measured quantities were as follows: four-component radiometer (CM21; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), two photosynthetically active radiation (PQS-1; 6 m, south, one vertically upward and one vertically downward), soil heat flux (HFP01; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), and soil temperature profile (AV-10T; 0, -0.02 and -0.04 m). The observations included the following: four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m^-2)), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m^2), the soil temperature (Ts_0 cm, Ts_2 cm and Ts_4 cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix(shenshawo desert station) from Jun to Sep, 2012

This dataset contains the automatic weather station (AWS) measurements from Shenshawo sandy desert station in the flux observation matrix from 1 June to 21 September, 2012. The site (100.49330° E, 38.78917° N) was located in a desert surface, which is near Zhangye city, Gansu Province. The elevation is 1594 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (PTB110; 2 m), rain gauge (52203; 10 m), wind speed (03001; 5 m and 10 m, towards north), wind direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 4 m, towards south), two infrared temperature sensors (IRTC3; 4 m, vertically downward), soil temperature profile (109; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFP01; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-14

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix(Huazhaizi desert station) from Feb to Sep, 2012

This dataset contains the automatic weather station (AWS) measurements from Huazhaizi desert steppe station in the flux observation matrix from 2 June to 21 September, 2012. The site (100.31860° E, 38.76519° N) was located in a desert steppe surface, which is near Zhangye city, Gansu Province. The elevation is 1731 m. There are two equipment in the site, and installed by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CAREERI) and Beijing Normal University (BNU), respectively. The installation heights and orientations of BNU were as follows: two infrared temperature sensors (SI-111; 2.65 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04 m), and soil moisture profile (CS616; -0.02, -0.04 m). For the CAREERI installation: air temperature and humidity profile (HMP45A; 1, 1.99 and 2.99 m, north), wind speed profile (03102; 0.48, 0.98, 1.99 and 2.99 m, north), wind direction (03302; 4 m, north), air pressure (PTB210; in waterproof box), rain gauge (CTK-15PC; 0.7 m), four-component radiometer (CNR1; 2.5 m, south), soil temperature profile (107; -0.04, -0.1, -0.18, -0.26, -0.34, -0.42 and -0.5 m), soil moisture profile (ML2X; -0.02, -0.1, -0.18, -0.26, -0.34, -0.42, -0.5, and -0.58 m, 3 duplicates in -0.02 m). The observations included the following: (1) infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm) (%). (2) air temperature and humidity (Ta_1 m, Ta_1.99 m and Ta_2.99 m; RH_1 m, RH_1.99 m and RH_2.99 m) (℃ and %, respectively), wind speed (Ws_0.48 m, Ws_0.98 m, Ws_1.99 m and Ws_2.99 m) (m/s), wind direction (WD_4 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil temperature (Ts_4 cm, Ts_10 cm, Ts_18 cm, Ts_26 cm, Ts_34 cm, Ts_42 cm and Ts_50 cm) (℃), soil moisture (Ms_2 cm_1, Ms_2 cm_2, Ms_2 cm_3, Ms_10 cm, Ms_18 cm, Ms_26 cm, Ms_34 cm, Ms_42 cm, Ms_50 cm and Ms_58 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The BNU data were averaged over intervals of 10 min, The CAREERI data were averaged over intervals of 30 min. A total of 144 runs per day were recorded in BNU data and 48 records per day in CAREERI data. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2012-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-14