Current Browsing: Terrestrial Surface


Data set of soil freezing depth in the future scenario of Qinghai Tibet Plateau Based on Stefan equation (2007-2017,2046-2065)

Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.

2022-07-22

Glacier runoff segmentation data set in the five river source areas of the Qinghai Tibet Plateau (1971-2015)

The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.

2022-07-06

Spatial distribution data set of water resource service value in the cryosphere of five river source areas of the Qinghai Tibet Plateau (2005-2010)

Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.

2022-07-05

Dataset of ground truth land surface evapotranspiration at the satellite pixel scale in the Heihe River Basin (from multi-station observations to satellite pixel scale) Version 1.0

Surface evapotranspiration (ET) is an important link of water cycle and energy transmission in the earth system. The accurate acquisition of ET is helpful to the study of global climate change, crop yield estimation, drought monitoring, and has important guiding significance for regional and even global water resources planning and management. With the development of remote sensing technology, remote sensing estimation of surface evapotranspiration has become an effective way to obtain regional and global evapotranspiration. At present, a variety of low and medium resolution surface evapotranspiration products have been produced and released in business. However, there are still many uncertainties in the model mechanism, input data, parameterization scheme of remote sensing estimation of surface evapotranspiration model. Therefore, it is necessary to use the real method. The accuracy of remote sensing estimation of evapotranspiration products was quantitatively evaluated by sex test. However, in the process of authenticity test, there is a problem of spatial scale mismatch between the remote sensing estimation value of surface evapotranspiration and the site observation value, so the key is to obtain the relative truth value of satellite pixel scale surface evapotranspiration. Based on the flux observation matrix of "multi-scale observation experiment of non-uniform underlying surface evaporation" in the middle reaches of Heihe River Basin from June to September 2012, the stations 4 (Village), 5 (corn), 6 (corn), 7 (corn), 8 (corn), 11 (corn), 12 (corn), 13 (corn), 14 (corn), 15 (corn), 17 (orchard) and the lower reaches of January to December 2014 Oasis Populus euphratica forest station (Populus euphratica forest), mixed forest station (Tamarix / Populus euphratica), bare land station (bare land), farmland station (melon), sidaoqiao station (Tamarix) observation data (automatic meteorological station, eddy correlator, large aperture scintillation meter, etc.) are used as auxiliary data, and the high-resolution remote sensing data (surface temperature, vegetation index, net radiation, etc.) are used as auxiliary data. See Fig. 1 for the distribution map. Considering the land Through direct test and cross test, six scale expansion methods (area weight method, scale expansion method based on Priestley Taylor formula, unequal weight surface to surface regression Kriging method, artificial neural network, random forest, depth belief network) were compared and analyzed, and finally a comprehensive method (on the underlying surface) was optimized. The area weight method is used when the underlying surface is moderately inhomogeneous; the unequal weight surface to surface regression Kriging method is used when the underlying surface is moderately inhomogeneous; the random forest method is used when the underlying surface is highly inhomogeneous) to obtain the relative true value (spatial resolution of 1km) of the surface evapotranspiration pixel scale of MODIS satellite transit instantaneous / day in the middle and lower reaches of the flux observation matrix area respectively, and to observe through the scintillation with large aperture. The results show that the overall accuracy of the data set is good. The average absolute percentage error (MAPE) of the pixel scale relative truth instantaneous and day-to-day is 2.6% and 4.5% for the midstream satellite, and 9.7% and 12.7% for the downstream satellite, respectively. It can be used to verify other remote sensing products. The evapotranspiration data of the pixel can not only solve the problem of spatial mismatch between the remote sensing estimation value and the station observation value, but also represent the uncertainty of the verification process. For all site information and scale expansion methods, please refer to Li et al. (2018) and Liu et al. (2016), and for observation data processing, please refer to Liu et al. (2016).

2022-06-06

Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

2022-05-17

Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000-2021)

Land surface temperature (LST) is one of the important parameters of the interface between the earth's surface and atmosphere. It is not only the direct reflection of the interaction between the surface and the atmosphere, but also has a complex feedback effect on the earth atmosphere process. Therefore, land surface temperature is not only a sensitive indicator of climate change and an important prerequisite for mastering the law of climate change, but also a direct input parameter of many models, which has been widely used in many fields, such as meteorology, climate, environmental ecology, hydrology and so on. With the deepening and refinement of Geosciences and related fields, there is an urgent need for all weather LST based on satellite remote sensing. The generation principle of this dataset is a satellite thermal infrared remote sensing reanalysis data integration method based on a new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. The method makes full use of the high-frequency and low-frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data, and finally reconstructs a high-quality all-weather land surface temperature data set. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST is used as reference, the mean deviation (MBE) of the data set is 0.08k to 0.16k, and the standard deviation of deviation (STD) is 1.12k to 1.46k. Compared with the daily 1km AATSR LST product released by ESA, the MBE and STD of the product are -0.21k to 0.25k and 1.27k to 1.36k during the day and night. Based on the measured data of 15 stations in Heihe River Basin, Northeast China, North China and South China, the test results show that the MBE is -0.06k to -1.17k, and the RMSE is 1.52k to 3.71k, and there is no significant difference between clear sky and non clear sky. The time resolution of this data set is twice a day, the spatial resolution is 1km, and the time span is from 2000 to 2021; The spatial scope includes the main areas of China's land (including Hong Kong, Macao and Taiwan, excluding the islands in the South China Sea) and the surrounding areas (72 ° E-135 ° E,19 ° N-55 ° N)。 This dataset is abbreviated as trims LST (thermal and reality integrating modem resolution spatial sealing LST) for users to use. It should be noted that the spatial subset of trims LST, trims lst-tp (1 km daily land surface temperature data set in Western China, trims lst-tp; 2000-2021) V2) has also been released in the national Qinghai Tibet Plateau scientific data center to reduce the workload of data download and processing for relevant users.

2022-05-16

Data of annual lake area in the endorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019

This data provides the annual lake area of ​​582 lakes with an area greater than 1 km2 in the enorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019. First, based on JRC and SRTM DEM data, 582 lakes are identified in the area that are larger than 1 km2. All Landsat 5/7/8 remote sensing images covering a lake are used to make annual composite images. NDWI index and Ostu algorithm were used to dynamically segment lakes, and the size of each lake from 1986 to 2019 is then calculated. This study is based on the Landsat satellite remote sensing images, and using Google Earth Engine allowed us to process all Landsat images available to create the most complete annual lake area data set of more than 1 km2 in the Qinghai-Tibet Plateau area; A set of lake area automatic extraction algorithms were developed to calculate of the area of ​​a lake for many years; This data is of great significance for the analysis of lake area dynamics and water balance in the Qinghai-Tibet Plateau region, as well as the study of the climate change of the Qinghai-Tibet Plateau lake.

2022-04-19

Landsat normalized difference water index (NDWI) products over the Tibetan Plateau (1980s-2019)

The dataset is the normalized difference water index (NDWI) products from 1970s to 2020 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the NDWI equation which use the difference ratio between the green band and NIR band to enhance the water information, and then to weaken the information of vegetation, soil, buildings and other targets.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.NDWI is usually used to extract surface water information effectively, therefore it is widely used in water resoureces, hydrology, forestry and agriculture.

2022-04-19

Glacier melt runoff data of the Qinghai Tibet Plateau (2020)

Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.

2022-04-19

Aboveground biomass data set of temperate grassland in northern China (1993-2019)

Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.

2022-04-18