Current Browsing: vegetation type


Vegetation map (1:1,000,000) in the Heihe River basin (2001)

The data is the digitization of the Heihe River basin part of the 1:1 million Vegetation Atlas of China, 1:1000, 000 Vegetation Atlas of China is edited by academician Hou Xueyu, a famous vegetation ecologist (Hou Xueyu, 2001). It is jointly compiled by more than 250 experts from 53 units such as research institutes of Chinese Academy of Sciences, relevant ministries and commissions, relevant departments of various provinces and regions, colleges and universities. It is another summative achievement of vegetation ecologists in China over 40 years after the publication of monographs such as vegetation of China Basic map of natural resources and natural conditions of the family. It is based on the rich first-hand information accumulated by vegetation surveys carried out throughout the country over the past half century, and the materials obtained by modern technologies such as aerial remote sensing and satellite images, as well as the latest research achievements in geology, soil science and climatology. It reflects in detail the distribution of vegetation units of 11 vegetation type groups, 796 formations and sub formations of 54 vegetation types, horizontal and vertical zonal distribution laws, and also reflects the actual distribution of more than 2000 dominant species of plants, major crops and cash crops in China, as well as the close relationship between dominant species and soil and ground geology. The atlas is a kind of realistic vegetation map, reflecting the recent quality of vegetation in China.

2020-06-05

Soil physical properties - soil bulk density and mechanical composition dataset of Tianlaochi Watershed in Qilian Mountains

A total of 137 soil samples of different vegetation types, different altitudes and different terrains were collected from June 2012 to August 2012. The soil layer of each sample point was divided into three layers of 0-10cm, 10-20cm and 20-30cm, with an altitude of 2700-3500m m. The vegetation types were divided into five types: Picea crassifolia forest, Sabina przewalskii, subalpine scrub meadow, grassland and dry grassland. At the same time of sampling, hand-held GPS is used to record the location information and environmental information of each sampling point, including longitude, latitude, altitude, slope, aspect, terrain curvature, vegetation type, soil thickness, maximum root depth, etc. Soil bulk density: The measurement method of soil bulk density is to put the sample into an envelope and dry it in an oven at 105℃ for 24 hours, then take it out and place it for 30 minutes to weigh. The ratio of the weighing result to the volume of the ring cutter is the soil bulk density, and the unit is g/cm3. Soil mechanical composition: hydrometer method is used to measure the soil mechanical composition, which includes the content of soil sand, silt and clay.

2020-03-15

The soil evaporation data of sub-alpine grasslands in Tianlaochi Catchment in Qilian Mountain (2013)

This data is soil evapotranspiration data of subalpine grassland in tianlaochi small watershed of Qilian Mountain. Lysimeter was used to observe soil evapotranspiration and provide basic data for the development of watershed evapotranspiration model. Six repeated experiments were conducted to observe the soil evapotranspiration of subalpine grassland during the whole growing season. At 8:00 and 20:00 every day, use an electronic scale with an accuracy of 1G to weigh the inner barrel. In case of rainfall, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage water in the leakage barrel at the same time. Observation instrument: 1) standard 20 cm diameter rain gauge. 2) Lysimeter was made by ourselves (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy 1g) is used to observe the weight change of lysimeter.

2020-03-10

HiWATER: Land cover map in the core experimental area of flux observation matrix

The dataset contains vegetation type in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI during 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Hierarchical classification is applied based on CASI data. According to various land types, pixel classifications is used for forest, grassland, bare land and building lands; in-situ observations and investigations are used for different crops. Dataset contains: land types, including maize, leek, poplar trees, cauliflower, bell pepper, potatoes, endive sprout, orchard, watermelon, kidney bean, pear orchard, shadow, and non-vegetation, except for 14 others which are not classified. Observation site: core experimental areas with 5*5 matrix structure in the middle reaches of the Heihe river basin Date: From 25 June in 2012 (UTC+8) on.

2019-09-15

HiWATER: Simultaneous measurement dataset of vegetation chlorophyll content in the middle of Heihe River Basin on July. 8, 2012

The dataset includes the chlorophyll content of vegetation in different site which has different types of vegetation, acquired on 8 July, 2012, in order to validate the Chlorophyll products. Observation instruments: Sampling, Acetone extraction method Measurement methods: To analyze the influence height on chlorophyll , we select 12 different corn samples based on the height of corn. To compare the chlorophyll content of different types of vegetation, we also select 3 types of vegetation sample on the first EC tower, 1 beans sample near the seventeenth EC tower and 3 reed samples on wetland. A total of selected 19 different samples are analyzed in the laboratory in the College of Life Science, Hexi. We extract chlorophyll a, chlorophyll b, the content of total chlorophyll of selected samples. Dataset contents: Chlorophyll a, chlorophyll b, the content of total chlorophyll Measurement time: 8 July, 2012

2019-09-14