Current Browsing: Cryosphere


Daily cloudless MODIS snow albedo dataset of Babaohe River basin (2008-2014)

The proportion data set of daily cloudless MODIS snow cover area in babaohe river basin (2008.1.1-2014.6.1) was obtained after cloud removal processing using a cloud removal algorithm based on cubic spline function interpolation on the basis of daily cloudless MODIS snow cover product-mod10a1 (tang zhiguang, 2013). This data set adopts the projection method of UTM (horizontal axis isometric cutting cylinder), with a spatial resolution of 500m, and provides Daily Snow Albedo daily-sad results for the babao river basin.The data set is a daily file from January 1, 2008 to June 1, 2014.Each file is the snow albedo result of the day, with a value of 0-100 (%), is the ENVI standard file, and the naming rule is: mod10a1.ayyyyddd_h25v05_snow_sad_grid_2d_reproj_babaohe_nocloud.img, where YYYY represents the year, DDD stands for Julian day (001-365/366).The file can be opened directly with ENVI or ARCMAP software. The original MODIS snow cover data products processed by declouding are derived from MOD10A1 products processed by the us national snow and ice data center (NSIDC). This data set is in HDF format and USES sinusoidal projection. The attributes of the cloud-free MODIS albedo data set (2008.1.1-2014.1.1) in babaohe river basin are composed of the spatial and temporal resolution, projection information and data format of the dataset.

2020-03-29

Frozen depth of frozen ground in Hulugou sub-basin of the Heihe River Basin (2013)

1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2013 to December 31, 2013, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m

2020-03-11

Frozen depth of frozen ground in Hulugou, a sub-basin of Heihe River Basin (2012)

1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2012 to December 31, 2012, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m

2020-03-11

Frozen depth of frozen ground in Hulugou sub-basin of the Heihe River Basin (2011)

1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m

2020-03-11

Greenland ice sheet elevation change data V1.0 (2004-2008)

First of all, the data of ice cover elevation change is obtained by using the data of glas12 in 2004 and 2008. In ideal case, each track is strictly repeated. However, due to the track deviation, it can not be guaranteed that the track is strictly repeated according to the design. The deviation varies from several meters to several hundred meters. The grid of 500m * 500m is taken, and the point falling in the same grid is considered as the weight of the repeated track. The elevation change in 2004-2008 is obtained by subtraction of complex points, and the annual elevation change is obtained. Ice sheet elevation change data

2020-01-18

WATER: Dataset of ground truth measurements for snow synchronizing with the airborne PHI mission in the Binggou watershed foci experimental area (Mar. 24, 2008)

The dataset of ground truth measurements for snow synchronizing with the airborne PHI mission was obtained in the Binggou watershed foci experimental area on Mar. 24, 2008. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the Snowfork in BG-A. (2) Snow parameters as the snow surface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, and snow density by the aluminum case in BG-A1, BG-A2, BG-B, BG-D, BG-E and BG-F5 (three sampling units each) from 11:11-12:35 (BJT) with the airplane overpass. 64 points were selected by four groups. (3) Snow albedo by the total radiometer in BG-A. (4) The snow spectrum by ASD (Xinjiang Meteorological Administration) in BG-A11 Two files including raw data and preprocessed data were archived.

2019-09-14

WATER: Dataset of ground truth measurement synchronizing with Envisat ASAR in the arid region hydrological experimental area during the pre-observation period on Sep. 19, 2007

The dataset of ground truth measurement synchronizing with Envisat ASAR was obtained in the arid region hydrological experimental area on Sep. 19, 2007 during the pre-observation period. One scene of Envisat ASAR image was captured on Sep. 19. The data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:29 BJT. Those provide reliable ground data for remote sensing retrieval and validation of soil moisture from Envisat ASAR image. Observation items included: (1) soil moisture measured by the cutting ring method in Linze reed land, Zhangye farmland, Zhangye gobi, Linze maize land, Linze alfalfa land, Zhangye weather station, and Linze wetland. (2) GPS measured by GARMIN GPS 76 (3) vegetation measurements including the vegetation height, the green weight, the dry weight, the sampling method, and descriptions on the land type, uniformity and dry and wet conditions (4) atmospheric parameters at Daman Water Management office measured by CE318 (produced by CIMEL in France). The total optical depth, aerosol optical depth, Rayleigh scattering coefficient, column water vapor in 936 nm, particle size spectrum and phase function were then retrieved from these observations. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318. Those data include the raw data in .k7 and can be opened by ASTPWin. ReadMetext files (.txt) is attached for detail. Processed data (after retrieval of the raw data) archived as Excel files are on optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, the near surface air temperature, the solar azimuth, zenith, solar distance correlation factors, and air column mass number. (5) roughness measured by the roughness plate together with the digital camera. The coordinates of the sample would be got with the help of ArcView; and after geometric correction, surface height standard deviation (cm) and correlation length (cm) could be acquired based on the formula listed on pages 234-236, Microwave Remote Sensing (Vol. II). The roughness data were initialized by the sample name, which was followed by the serial number, the name of the file, standard deviation and correlation length. Each text files (.txt) file is matched with one sample photo and standard deviation and correlation length represent the roughness. In addition, the length of 101 radius is also included for further checking.

2019-09-13

WATER: Dataset of ground truth measurements for snow synchronizing with the airborne microwave radiometers (K&Ka bands) mission in the Binggou watershed foci experimental area on March 30, 2008

The dataset of ground truth measurements for snow synchronizing with the airborne microwave radiometers (K&Ka bands) mission was obtained in the Binggou watershed foci experimental area on Mar. 30, 2008. Those provide reliable data for retrieval of snow parameters and properties, especially for dry and wet snow identification. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A; (2) Snow parameters including snow depth, the snow surface temperature synchronizing with the airborne microwave radiometers (K&Ka bands), the snow layer temperature, the snow grain size and snow density in BG-A (10 points), BG-B (6 points), BG-F (12 points), BG-H (21 points) and BG-I (20 points); For each snow pit, the snowpack was divided into several layers with 10-cm intervals of snow depth. The layer depth (by the ruler), the snow grain size (by the handheld microscope), snow density (by the cutting ring) and the snow temperature (by the probe thermometer) were obtained at each snow pit. Two files including raw data and the preprocessed data were archived.

2019-09-10

WATER: Dataset of ground truth measurements for snow synchronizing with MODIS in the Binggou watershed foci experimental area on Mar. 14, 2008

The dataset of ground truth measurements for snow synchronizing with MODIS was obtained in the Binggou watershed foci experimental area on Mar. 14, 2008. Those provide reliable data for snow-cover extent mapping and the retrieval of the snow surface temperature from MODIS remote sensing approaches. Observation items included: (1) Snow parameters including the snow surface temperature, the snow-soil interface temperature, the land surface (ground surface) temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, snow depth by the ruler, snow density by the snow shovel, the snow grain size by the handheld microscope and the snow surface temperature synchronizing with MODIS. (2) Snow albedo by the total radiometer in BG-A from 11:10-13:24 on Mar. 14, 2008. (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) synchronizing with MODIS in BG-A and BG-I. Two files including raw data and the preprocessed data were archived.

2019-05-23

WATER: Dataset of ground truth measurements synchronizing with Envisat ASAR in the A'rou foci experimental area on Jul. 14, 2008

The dataset of ground truth measurements synchronizing with Envisat ASAR was obtained in No. 1, 2 and 3 quadrates of the A'rou foci experimental area on Jul. 14, 2008. The Envisat ASAR data were in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:31 BJT. The quadrates were divided into 4×4 subsites, with each one spanning a 30×30 m2 plot. Those provide reliable ground data for retrieval and validation of soil moisture from active remote sensing approaches. Observation items included: (1) soil moisture by POGO soil sensor in No. 1, 2 and 3 quadrates; 25 corner points of each subsite were chosen for the soil temperature, soil volumetric moisture, the loss tangent, soil conductivity, and the real part and the imaginary part of soil complex permittivity; (2) the soil temperature by the handheld infrared thermometer 3# and 5# from BNU in No. 1 quadrate, 1# and 4# in No. 2 quadrate, and 2# and 6# in No. 3 quadrate; 25 corner points of each subsite were measured twice by two groups, and time, the maximum, the minimum and the mean value, and the land cover types were all recorded. (3) spectrum of the grassland, the bare land and the stellera by the thermal infrared spectrometer, 102F. The dataset includes ASAR images, preprocessed data of the thermal infrared spectrometer, 102F, the surface temperature and soil moisture synchronizing with Envisat ASAR.

2019-05-23