The data set is NDVI data of long time series acquired by SeaWiFS. The time range of the data set is from September 1997 to 2007. In order to remove the noise in NDVI data, the maximum synthesis is carried out. A NDVI image is synthesized every 15 days. The data set is cut out from the global data set, so as to carry out the research and analysis of the source areas of the three rivers separately. The data format of this data set is geotiff, spatial resolution is 4 km, temporal resolution is 15 days, time range: 256 days in 1997 to 365 days in 2007.
Charles R. Mcclain
This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. In order to use the data more conveniently, the source of the three rivers is spliced and cut as a whole, so as to facilitate the use of the source area of the three rivers. The data trend is 2017. This data set is composed of 1:1 million residential areas in Sanjiangyuan area, including residential land (RESA) and residential place (RESP) layers, RESP residential area (point) layers, including ordinary houses, grazing areas and so on.
National Catalogue Service for Geographic Information
On August 19, 2018, DJI UAV was used to aerial photograph the alpine meadow sample in Qumali County, the source Park of the Yangtze River. The overlap degree of adjacent photographs was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue. The ground resolution of the Orthophoto Image was 2.5 cm, and the area of the image was 860 m x 770 m, and the resolution of DSM. It's 4.5cm.
WANG Xufeng, WEI Yanqiang
This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2015. This data set includes 1:250,000 residential place names (AANP) in Sanjiangyuan area, including administrative place names at all levels and urban and rural residential place names. Names and Definitions of Attribute Items of Residential Place Name Data (AANP): Attribute Item Description Fill in Example NAME Name Quanqu Village PINYIN Chinese Pinyin Quanqucun CLASS Geographical Name Classification Code AK GNID Place Name Code 632524000000 XZNAME Township Name Ziketan Township
National Catalogue Service for Geographic Information
On August 19, 2018, DJI UAV was used to aerial photograph the wetland sample in Qumalai County of the Yangtze River Source Park. The overlap degree of adjacent photographs was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue, with a ground resolution of 2 cm, an area of 850 m x 1000 m and a resolution of 4.5 cm for DSM.
WANG Xufeng, WEI Yanqiang
On August 20, 2018, a DJI Elf 4 UAV camera was used to take aerial photographs of the alpine meadow sample in Qumali County, which is located in the source area of the Yangtze River. A total of 31 routes were set up. The flight altitude was 100 m, and the overlap degree of adjacent photographs was not less than 70%. A total of 664 aerial photographs were obtained and stored in the Drone Photoes of Qumalai (2018) folder.
WANG Xufeng, WEI Yanqiang
On August 22, 2018, a DJI camera was used in the fixed sample of Lancang River headwaters. The overlap degree of adjacent photos was not less than 70% according to the set flight route. The Orthophoto Image and DSM were generated using the photographs taken. The Orthophoto Image included three bands of red, green and blue, with a ground resolution of 2.5 cm, a shooting area of 1000m x 1000m and a DSM resolution of 4.5 cm. Due to the communication failure, the middle four airstrips were not photographed, so there was a band in the middle of the image missing.
WANG Xufeng, WANG Xufeng, WEI Yanqiang, WANG Xufeng
The data set includes estimated data on the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on the MODIS 16-day synthetic NDVI product (MOD13A2 collection 6). Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage ranges from 2001 to 2014, and the spatial resolution is 1 km.
WANG Xufeng
The data set contains the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin. The observation projects include the boundaries of the three source regions of the Yellow River, the Yangtze River and the Lancang River, the boundary of the whole Sanjiangyuan region and the boundaries of the counties within the basin.
WEI Yanqiang, Establishing Developing and Applying of the Space-Air-Field Integrated Eco-Monitoring and Data Infrastructure of the Three-River-Source National Park
The data set contains land cover data sets from the Yellow River Source, the Yangtze River Source, and the Lancang River from 1992 to 2015. A total of 22 land cover classifications based on the UN Land Cover Classification System were included. NOAA AVHRR, SPOT, ENVISAT, PROBA-V and other vegetation classification products were integrated. In China, (1) first, combined with the 1:100,000 vegetation classification (2007) of China, quality correction and control were performed, and (2) the vegetation classification of China emphasized the combination with climate zones, when correcting CCI-LC, climate divisions and the corresponding vegetation types were combined, and the data label was comprehensively revised.
WEI Yanqiang
The data set contains NPP products data produced by the maximum synthesis method of the three source regions of the Yellow River, the Yangtze River and the Lancang River. The data of remote sensing products MOD13Q1, MOD17A2, and MOD17A2H are available on the NASA website (http://modis.gsfc.nasa.gov/). The MOD13Q1 product is a 16-d synthetic product with a resolution of 250 m. The MOD17A2 and MOD17A2H product data are 8-d synthetic products, the resolution of MOD17A2 is 1 000 m, and the resolution of MOD17A2H is 500 m. The final synthetic NPP product of MODIS has a resolution of 1 km. The downloaded MOD13Q1, MOD17A2, and MOD17A2H remote sensing data products are in HDF format. The data have been processed by atmospheric correction, radiation correction, geometric correction, and cloud removal. 1) MRT projection conversion. Convert the format and projection of the downloaded data product, convert the HDF format to TIFF format, convert the projection to the UTM projection, and output NDVI with a resolution of 250 m, EVI with a resolution 250 m, and PSNnet with resolutions of 1 000 m and 500 m. 2) MVC maximum synthesis. Synthesize NDVI, EVI, and PSNnet synchronized with the ground measured data by the maximum value to obtain values corresponding to the measured data. The maximum synthesis method can effectively reduce the effects of clouds, the atmosphere, and solar elevation angles. 3) NPP annual value generated from the NASA-CASA model.
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
The data set includes the estimated data of the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on 10-day synthetic NDVI products from the SPOT satellite. Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage is from 1999 to 2013, and the spatial resolution is 1 km.
WANG Xufeng
The data set contains meteorological observations from Guoluo Station from January 1, 2017, to December 31, 2017, and includes temperature (Ta_1_AVG), relative humidity (RH_1_AVG), vapour pressure (Pvapor_1_AVG), average wind speed (WS_AVG), atmospheric pressure (P_1), average downward longwave radiation (DLR_5_AVG), average upward longwave radiation (ULR_5_AVG), average net radiation (Rn_5_AVG), average soil temperature (Ts_TCAV_AVG), soil water content (Smoist_AVG), total precipitation (Rain_7_TOT), downward longwave radiation (CG3_down_Avg), upward longwave radiation (CGR3_up_Avg), average photosynthetically active radiation (Par_Avg), etc. The temporal resolution is 1 hour. Missing observations have been assigned a value of -99999.
HU Linyong
The data set contains vegetation quadrat survey data for Qumalai, Mado and Hoh Xil from August 3, 2017, to August 9, 2017. The main survey contents are coverage, altitude and above-ground biomass. It covers three vegetation types: alpine grassland, alpine wetland and alpine meadow. The latitude, longitude, altitude, total coverage, species name and quantity of the quadrat were recorded, and three samples of each species were selected to measure the altitude, the total above-ground biomass, and the above-ground biomass of each category.
HU Linyong, LI Qi, HU Linyong, LI Qi
This data set was derived from MODIS version 005 and the IMS data set. It is a daily cloudless snow area product processed by cloud removal. Value range: 0%-100%. 200: snow; 100: lake ice; 25: land; 37: sea. The spatial resolution is 0.005 degrees (approximately 500 m), and the temporal coverage is from July 5, 2002, to December 31, 2014.
HAO Xiaohua
The meteorological elements distribution map of the plateau, which is based on the data from the Tibetan Plateau National Weather Station, was generated by PRISM model interpolation. It includes temperature and precipitation. Monthly average temperature distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 Monthly average temperature distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, Precipitation distribution map of the Tibetan Plateau from 1961 to 1990 (30-year average values): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 Precipitation distribution map of the Tibetan Plateau from 1991 to 2020 (30-year average values): p1991-20_1.e00,p1991-20_2.e00,p1991-20_3.e00,p1991-20_4.e00,p1991-20_5.e00, p1991-20_6.e00,p1991-20_7.e00,p1991-20_8.e00,p1991-20_9.e00,p1991-20_10.e00, p1991-20_11.e00,p1991-20_12.e00, The temporal coverage of the data is from 1961 to 1990 and from 1991 to 2020. The spatial coverage of the data is 73°~104.95° east longitude, 26.5°~44.95° north latitude, and the spatial resolution is 0.05 degrees×0.05 degrees (longitude×latitude), and it uses the geodetic coordinate projection. Name interpretation: Monthly average temperature: The average value of daily average temperature in a month. Monthly precipitation: The total precipitation in a month. Dimensions: The file format of the data is E00, and the DN value is the average value of monthly average temperature (×0.01°C) and the average monthly precipitation (×0.01 mm) from January to December. Data type: integer Data accuracy: 0.05 degrees × 0.05 degrees (longitude × latitude). The original sources of these data are two data sets of 1) monthly mean temperature and monthly precipitation observation data from 128 stations on the Tibetan Plateau and the surrounding areas from the establishing times of the stations to 2000 and 2) HadRM3 regional climate scenario simulation data of 50×50 km grids on the Tibetan Plateau, that is, the monthly average temperature and monthly precipitation simulation values from 1991 to 2020. From 1961 to 1990, the PRISM (Parameter elevation Regressions on Independent Slopes Model) interpolation method was used to generate grid data, and the interpolation model was adjusted and verified based on the site data. From 1991 to 2020, the regional climate scenario simulation data were downscaled to generate grid data by the terrain trend surface interpolation method. Part of the source data came from the results of the GCM model simulation; the GCM model used the Hadley Centre climate model HadCM2-SUL. a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. The spatial interpolation of meteorological data adopted the PRISM (Parameter-elevation Regressions on Independent Slopes Model) method: Daly, C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. Due to the difficult observational conditions in the plateau area and the lack of basic research data, there were deletions of meteorological data in some areas. After adjustment and verification, the accuracy of the data was only good enough to be used as a reference for macroscale climate research. The average relative error rate of the monthly average temperature distribution of the Tibetan Plateau from 1961 to 1990 was 8.9%, and that from 1991 to 2020 was 9.7%. The average relative error rate of precipitation data on the Tibetan Plateau from 1961 to 1990 was 20.9%, and that from 1991 to 2020 was 22.7%. The area of missing data was interpolated, and the values of obvious errors were corrected.
ZHOU Caiping
The data set includes the estimated data on the SOS (start of season) and the EOS (end of season) of vegetation in Sanjiangyuan based on GIMMS3g version 1.0, the latest version of the GIMMS NDVI data set. Two common phenological estimation methods were adopted: the threshold extraction method based on polynomial fitting (the term “poly” was included in the file names) and the inflection point extraction method based on double logistic function fitting (the term “sig” was included in the file names). These data can be used to analyse the relationship between vegetation phenology and climate change. The temporal coverage ranges from 1982 to 2015, and the spatial resolution is 8 km.
WANG Xufeng
The data set contains the rare animal survey data for the Sanjiangyuan area from 2016 to 2017, including the latitude and longitude of the survey site, the length of the sample line, animal discovery time, animal names, quantity, location of the occurrence, type of habitat, affiliated families, etc.
HU Linyong, ZHANG Tongzuo, ZHANG Tongzuo,
These data contain two data files: GLOBELAND30 TILES (raw data) and TIBET_ GLOBELAND30_MOSAIC (mosaic data). The raw data were downloaded from the Global Land Cover Data website (GlobalLand3) (http://www.globallandcover.com) and cover the Tibetan Plateau and surrounding areas. The raw data were stored in frames, and for the convenience of using the data, we use Erdas software to splice and mosaic the raw data. The Global Land Cover Data (GlobalLand30) is the result of the “Global Land Cover Remote Sensing Mapping and Key Technology Research”, which is a key project of the National 863 Program. Using the American Landsat images (TM5, ETM+) and Chinese Environmental Disaster Reduction Satellite images (HJ-1), the data were extracted by a comprehensive method based on pixel classification-object extraction-knowledge checks. The data include 10 primary land cover types—cultivated land, forest, grassland, shrub, wetland, water body, tundra, man-made cover, bare land, glacier and permanent snow—without extracting secondary types. In terms of accuracy assessment, nine types and more than 150,000 test samples were evaluated. The overall accuracy of the GlobeLand30-2010 data is 80.33%. The Kappa indicator is 0.75. The GlobeLand30 data use the WGS84 coordinate system, UTM projection, and 6-degree banding, and the reference ellipsoid is the WGS 84 ellipsoid. According to different latitudes, the data are organized into two types of framing. In the regions of 60° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 6° (longitude); in the regions of 60° to 80° north and south latitudes, the framing is carried out according to a size of 5° (latitude) × 12° (longitude). The framing is projected according to the central meridian of the odd 6° band. GLOBELAND30 TILES: The original, unprocessed raw data are retained. TIBET_ GLOBELAND30_MOSAIC: The Erdas software is used to mosaic the raw data. The parameter settings use the default value of the raw data to retain the original, and the accuracy is consistent with that of the downloading site.
CHEN Jun
This data set contains sequence data of the number variation of livestock in the major cities and counties of the Tibetan Plateau from 1970 to 2006. It is used to study the social and economic changes of the Tibetan Plateau. The table has ten fields. Field 1: Year Interpretation: Year of the data Field 2: Province Interpretation: The province from which the data were obtained Field 3: City/Prefecture Interpretation: The city or prefecture from which the data were obtained Field 4: County Interpretation: The name of the county Field 5: Large livestock (10,000) Interpretation: The number of large livestock such as cattle, horses, mules, donkeys, and camels. Field 6: Cattle herd (10,000) Interpretation: Number of cattle Field 7: Equine animals(10,000) Interpretation: The number of equine animals such as horses, mules and donkeys. Field 8: Horses (10,000) Interpretation: The number of horses Field 9: Sheep (10,000) Interpretation: The number of sheep Field 10: Data Sources Interpretation: Source of Data The data come from the statistical yearbook and county annals. Some are listed as follows. [1] Gansu Yearbook Editorial Committee. Gansu Yearbook [J]. Beijing: China Statistics Press, 1984, 1988-2009 [2] Statistical Bureau of Yunnan Province. Yunnan Statistical Yearbook [J]. Beijing: China Statistics Press, 1988-2009 [3] Statistical Bureau of Sichuan Province, Sichuan Survey Team. Sichuan Statistical Yearbook [J]. Beijing: China Statistics Press, 1987-1991, 1996-2009 [4] Statistical Bureau of Xinjiang Uighur Autonomous Region . Xinjiang Statistical Yearbook [J]. Beijing: China Statistics Press, 1989-1996, 1998-2009 [5] Statistical Bureau of Tibetan Autonomous Region. Tibet Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-2009 [6] Statistical Bureau of Qinghai Province. Qinghai Statistical Yearbook [J]. Beijing: China Statistics Press, 1986-1994, 1996-2008. [7] County Annals Editorial Committee of Huzhu Tu Autonomous County. County Annals of Huzhu Tu Autonomous County [J]. Qinghai: Qinghai People's Publishing House, 1993 [8] Haiyan County Annals Editorial Committee. Haiyan County Annals[J]. Gansu: Gansu Cultural Publishing House, 1994 [9] Menyuan County Annals Editorial Committee. Menyuan County Annals[J]. Gansu: Gansu People's Publishing House, 1993 [10] Guinan County Annals Editorial Committee. Guinan County Annals [J]. Shanxi: Shanxi People's Publishing House, 1996 [11] Guide County Annals Editorial Committee. Guide County Annals[J]. Shanxi: Shanxi People's Publishing House, 1995 [12] Jianzha County Annals Editorial Committee. Jianzha County Annals [J]. Gansu: Gansu People's Publishing House, 2003 [13] Dari County Annals Editorial Committee. Dari County Annals [J]. Shanxi: Shanxi People's Publishing House, 1993 [14] Golmud City Annals Editorial Committee. Golmud City Annals [J]. Beijing: Fangzhi Publishing House, 2005 [15] Delingha City Annals Editorial Committee. Delingha City Annals [J]. Beijing: Fangzhi Publishing House, 2004 [16] Tianjun County Annals Editorial Committee. Tianjun County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [17] Naidong County Annals Editorial Committee. Naidong County Annals [J]. Beijing: China Tibetology Press, 2006 [18] Gulang County Annals Editorial Committee. Gulang County Annals [J]. Gansu: Gansu People's Publishing House, 1996 [19] County Annals Editorial Committee of Akesai Kazak Autonomous County. County Annals of Akesai Kazakh Autonomous County [J]. Gansu: Gansu People's Publishing House, 1993 [20] Minxian County Annals Editorial Committee. Minxian County Annals [J]. Gansu: Gansu People's Publishing House, 1995 [21] Dangchang County Annals Editorial Committee. Dangchang County Annals [J]. Gansu: Gansu Cultural Publishing House, 1995 [22] Dangchang County Annals Editorial Committee. Dangchang County Annals(Sequel) (1985-2005) [J]. Gansu: Gansu Cultural Publishing House, 2006 [23] Wenxian County Annals Editorial Committee. Wenxian County Annals[J]. Gansu: Gansu Cultural Publishing House, 1997 [24] Kangle County Annals Editorial Committee. Kangle County Annals [J]. Shanghai: Sanlian Bookstore. 1995 [25] County Annals Editorial Committee of Jishishan (Baoan, Dongxiang, Sala) Autonomous County. County Annals of Jishishan (Baoan, Dongxiang, Sala) Autonomous County[J], Gansu: Gansu Cultural Publishing House, 1998 [26] Luqu County Annals Editorial Committee. Luqu County Annals [J]. Gansu: Gansu People's Publishing House, 2006 [27] Zhouqu County Annals Editorial Committee. Zhouqu County Annals [J]. Shanghai: Sanlian Bookstore. 1996 [28] Xiahe County Annals Editorial Committee. Xiahe County Annals [J]. Gansu: Gansu Cultural Publishing House, 1999 [29] Zhuoni County Annals Editorial Committee. Zhuoni County Annals [J]. Gansu: Gansu Nationality Publishing House, 1994 [30] Diebu County Annals Editorial Committee. Diebu County Annals [J]. Gansu: Lanzhou University Press, 1998 [31] Pengxian County Annals Editorial Committee. Pengxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1989 [32] Guanxian County Annals Editorial Committee. Guanxian County Annals [J]. Sichuan: Sichuan People's Publishing House, 1991 [33] Wenjiang County Annals Editorial Committee. Wenjiang County Annals [J]. Sichuan: Sichuan People's Publishing House, 1990 [34] Shifang County Annals Editorial Committee. Shifang County Annals [J]. Sichuan: Sichuan University Press, 1988 [35] Tianquan County Annals Editorial Committee. Tianquan County Annals [J]. Sichuan: Sichuan Science and Technology Press, 1997 [36] Shimian County Annals Editorial Committee. Shimian County Annals [J]. Sichuan: Sichuan Cishu Publishing House, 1999 [37] Lushan County Annals Editorial Committee. Lushan County Annals [J]. Sichuan: Fangzhi Publishing House, 2000 [38] Hongyuan County Annals Editorial Committee. Hongyuan County Annals [J]. Sichuan: Sichuan People's Publishing House, 1996 [39] Wenchuan County Annals Editorial Committee. Wenchuan County Annals [J]. Sichuan: Bayu Shushe, 2007 [40] Derong County Annals Editorial Committee. Derong County Annals [J]. Sichuan: Sichuan University, 2000 [41] Baiyu County Annals Editorial Committee. Baiyu County Annals [J]. Sichuan: Sichuan University Press, 1996 [42] Batang County Annals Editorial Committee. Batang County Annals [J]. Sichuan: Sichuan Nationality Publishing House, 1993 [43] Jiulong County Annals Editorial Committee. Jiulong County Annals(Sequel) (1986-2000) [J]. Sichuan: Sichuan Science and Technology Press, 2007 [44] County Annals Editorial Committee of Derung-Nu Autonomous County Gongshan. County Annals of Derung-Nu Autonomous County Gongshan [J]. Beijing: Nationality Publishing House, 2006 [45] Lushui County Annals Editorial Committee. Lushui County Annals [J]. Yunnan: Yunnan People's Publishing House, 1995 [46] Deqin County Annals Editorial Committee. Deqin County Annals [J]. Yunnan: Yunnan Nationality Publishing House, 1997 [47] Yutian County Annals Editorial Committee. Yutian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [48] Cele County Annals Editorial Committee. Cele County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2005 [49] Hetian County Annals Editorial Committee. Hetian County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 2006 [50] Qiemo County Local Chronicles Editorial Committee. Qiemo County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [51] Shache County Annals Editorial Committee. Shache County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [52] Yecheng County Annals Editorial Committee. Yecheng County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1999 [53] Akto County Local Chronicles Editorial Committee. Akto County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1996 [54] Wuqia County Local Chronicles Editorial Committee. Wuqia County Annals [J]. Xinjiang: Xinjiang People's Publishing House, 1995
National Bureau of Statics of China
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn