This data set includes the average concentrations of chemical species (Na+, K+, Mg2+, Ca2+ and TDS) in meltwater runoff draining 77 glaciers worldwide, annual glacial runoff from eight mountain ranges in Asia, and the mineral compositions of glacial deposits in some typical glacial catchments within Asia. This data set comes from the field monitoring of 19 glaciers in Asia by the data set provider, the previous published data worldwide, and the data shared by the authors of published papers. This data set can be used to evaluate the impact of climate warming on glacier erosion process and chemical weathering process, and the impact of glacier melt caused by climate warming on downstream ecosystems and element cycles.
LI Xiangying
China's daily snow depth simulation and prediction data set is the estimated daily snow depth data of China in the future based on the nex-gdpp model data set. The artificial neural network model of snow depth simulation takes the maximum temperature, minimum temperature, precipitation data and snow depth data of the day as the input layer of the model, The snow depth data of the next day is used as the target layer of the model to build the model, and then the snow depth simulation model is trained and verified by using the data of the national meteorological station. The model verification results show that the iterative space-time simulation ability of the model is good; The spatial correlations of the simulated and verified values of cumulative snow cover duration and cumulative snow depth are 0.97 and 0.87, and the temporal and spatial correlations of cumulative snow depth are 0.92 and 0.91, respectively. Based on the optimal model, this model is used to iteratively simulate the daily snow depth data in China in the future. The data set can provide data support for future snow disaster risk assessment, snow cover change research and climate change research in China. The basic information of the data is as follows: historical reference period (1986-2005) and future (2016-2065), as well as rcp4.5 and rcp8.5 scenarios and 20 climate models. Its spatial resolution is 0.25 ° * 0.25 °. The projection mode of the data is ease GR, and the data storage format is NC format. The following is the data file information in NC Time: duration (unit: day) Lon = 320 matrix, 320 columns in total Lat = 160 matrix, 160 rows in total X Dimension: Xmin = 60.125; // Coordinates of the corner points of the lower left corner grid in the X direction of the matrix Y Dimension: Ymin = 15.125; // Coordinates of the corner points of the grid at the lower left corner of the Y-axis of the matrix
CHEN Hongju, YANG Jianping, DING Yongjian
This data is precipitation data, which is the monthly precipitation product of tropical rainfall measurement mission TRMM 3b43. It integrates the main area of the Qinghai Tibet Plateau (25 ~ 40 ° n; 25 ~ 40 ° n); The precipitation data of 332 meteorological stations are from the National Meteorological Information Center of China Meteorological Administration. The reanalysis data set is obtained by the station 3 ° interpolation optimization variational correction method. For the monthly sample data from January 1998 to December 2018, the spatial coverage is 25 ~ 40 ° n; 73 ~ 105 ° e, the spatial resolution is 1 ° * 1 °.
XU Xiangde, SUN Chan
The data set is the seasonal hydrological observation data of the Yellow River from the hydrological station of the Qinghai Tibet Plateau. There are two hydrological stations: 1. Longmen hydrological station in the middle reaches of the Yellow River, which is the weekly hydrological data in 2013, including water temperature (T), runoff (QW), physical erosion rate (per) and pH. 2. Tangnaihai hydrological station of the Yellow River is monthly data from July 2012 to June 2014, including runoff (QW), sediment (salt), pH and EC. The data set was commissioned to be observed by the staff of the hydrological station of the Yellow River Water Conservancy Commission to provide basic hydrological data for the study of hydrology, hydrochemistry and hydrosphere cycle under the background of Qinghai Tibet Plateau uplift.
JIN Zhangdong, ZHAO Zhiqi
The data coverage area is Sichuan Tibet traffic corridor, which is vector line data. The data defines its active period and names it. The strike, nature, active period and exposure of the fault are described. However, the content is missing, and the secondary fault zone is not named. There are 590 linear elements within the Sichuan Tibet traffic corridor in this data set, but some linear elements are multiple elements of the same fault zone. The active fault zone is often the combination zone of different plates and different blocks. It is a relatively weak zone of the crust, which is easy to induce extremely serious earthquake disasters. It is also a concentrated development zone of geological disasters such as collapse, landslide and debris flow. The judgment of the location and nature of fault zone is of great significance to the risk susceptibility evaluation of geological disasters, and it is the key factor to study geological disasters.
WANG Lixuan
The Tibet-Obs established in 2008 consists of three regional-scale soil moisture (SM) monitoring networks, i.e. the Maqu, Naqu, and Ngari (including Ali and Shiquanhe) networks. This surface SM dataset includes the original 15-min in situ measurements collected at a depth of 5 cm by multiple SM monitoring sites of all the networks, and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
ZHANG Pei, ZHENG Donghai, WEN Jun, ZENG Yijian, WANG Xin, WANG Zuoliang, MA Yaoming, SU Zhongbo
In recent years, the melting of the Antarctic ice sheet has accelerated, and a large amount of surface melt water has appeared on the surface of the Antarctic ice sheet. Understandings of the spatial distribution and dynamics of surface melt water on the Antarctic ice sheet is of great significance for the study of the mass balance of the Antarctic ice sheet. This dataset is 2000-2020 surface melt water dataset of Antarctica Ice Sheet typical melting area (Prydz bay) based on 10-30m Landsat-7, 8 and Sentinel-2 images. The projections are polar azimuthal projections in vector format (ESRI Shapefile) and raster format (GeoTIFF) and the time is Southern Hemisphere summer (December-to-February).
YANG Kang
Snow water equivalent (SWE) is an important parameter of the surface hydrological model and climate model. The data is based on the ridge regression algorithm of machine learning, which integrates a variety of existing snow water equivalent data products to form a set of snow water equivalent data products with continuous time series and high accuracy. The spatial range of the data is Pan-Arctic (45 N° to 90 N °), The data time series is 1979-2019. The dataset is expected to provide more accurate snow water equivalent data for the hydrological and climate model, and provide data support for cryosphere change and global change.
LI Hongyi, SHAO Donghang, LI Haojie, WANG Weiguo, MA Yuan, LEI Huajin
The data set mainly includes typical rare earth deposits in China, such as Maoniuping and Lizhuang rare earth deposits in Mianning, Western Sichuan, and Gansha OBO rare earth deposits in Gansu Province. These rare earth deposits are genetically related to carbonate alkaline rock complex. In situ U-Pb dating, whole rock major and trace elements, Sr nd Pb radioisotopes, C-O-B-Ca stable isotopes and mineral in situ major and trace elements contents of rocks or ores in these complexes were analyzed. The major elements were measured by X-ray fluorescence spectrometer (XRF), the trace elements were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the isotopes were mainly measured by mc-icp-ms. The main conclusions are as follows: (1) it is revealed that the magma source area of alkaline carbonate type REE deposit experienced the addition of strong subduction material, and its formation depth may be deeper than previously thought(2) It is revealed that the aegirization may be related to carbonatite and alkaline magmatism, and there may be differences in the aegirization between the two types of magma(3) The later reformation of the rare earth deposits with younger age may be relatively weak, while the rare earth deposits with older age are easy to be influenced by the later geological process and difficult to distinguish.
WENG Qiang, LI Ningbo, LI Ao
The dataset is the normalized difference water index (NDWI) products from 1970s to 2020 over the Tibetan Plateau。The dataset is producted based on Landsat surface reflectance dataset. It is calculated by the NDWI equation which use the difference ratio between the green band and NIR band to enhance the water information, and then to weaken the information of vegetation, soil, buildings and other targets.And the corresponding production of quality identification documents (QA) is also generated to identify the cloud, ice and snow.NDWI is usually used to extract surface water information effectively, therefore it is widely used in water resoureces, hydrology, forestry and agriculture.
PENG Yan
Based on the analysis of brgdgts and hydrogen isotopes of leaf wax in lake sediments from Tengchong Qinghai (tcqh) in Yunnan Province, this study shows for the first time the high-resolution annual average temperature change history of low latitude land since the last glacial period (since the last 88000 years). According to the annual average temperature of South Asia established by tcqh core, there are two warm periods of 88000-71000 years and 45000-22000 years in this region, and the temperature range is about 2-3 ° C. Since the Holocene, the temperature has been increasing for about 1-2 years ° C。
ZHAO Cheng
This dataset contains the glacier outlines in Qilian Mountain Area in 2020. The dataset was produced based on classical band ratio criterion and manual editing. Chinese GF series images collected in 2020 were used as basic data for glacier extraction. Google images and Map World images were employed as reference data for manual adjusting. The dataset was stored in SHP format and attached with the attributions of coordinates, glacier ID and glacier area. Consisting of 1 season, the dataset has a spatial resolution of 2 meters. The accuracy is about 1 pixel (±2 meter). The dataset directly reflects the glacier distribution within the Qilian Mountain in 2020, and can be used for quantitative estimation of glacier mass balance and the quantitative assessment of glacier change’s impact on basin runoff.
Li Jia Li Jia LI Jia LI Jia
Data content: The data set products include impervious surface products with a resolution of 10 meters in the Qinghai-Tibet Plateau, which can be used as a key parameter for related research on the Qinghai-Tibet Plateau ecosystem. Data source and processing method: Product inversion is mainly based on Sentinel series data, considering joint features, combining depth spatial features, long-time NDVI and other exponential features, and topographic features, and using random forest model to achieve impervious surface information extraction. Data quality: The overall accuracy is high. Data application results and prospects: The data set will be continuously updated and can be used to further clarify the impact of human activities on the ecosystem of the Qinghai-Tibet Plateau.
WANG Guizhou
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
WU Guangjian
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
YANG Wei, LI Zhongqin, WANG Ninglian, QIN Xiang
Glacier surface micrometeorology is to observe the wind direction, wind speed, temperature, humidity, air pressure, four component radiation, ice temperature and precipitation at a certain height of the glacier surface. Glacier surface micrometeorology monitoring is one of the important contents of glacier monitoring. It is an important basic data for the study of energy mass balance, glacier movement, glacier melt runoff, ice core and other related model simulation, which lays a foundation for exploring the relationship between climate change and glacier change. Automatic monitoring is mainly carried out by setting up Alpine weather stations on the glacier surface, and portable weather stations can also be used for short-term flow monitoring. In recent years, more than 20 glacier surfaces in Tianshan, West Kunlun, Qilian, Qiangtang inland, Tanggula, Nianqing Tanggula, southeastern Tibet, Hengduan and Himalayas have been monitored. The data set is monthly meteorological data of glacier area and glacier end.
YANG Wei
Meteorological forcing dataset for Arctic River Basins includes five elements: daily maximum, minimum and average temperature, daily precipitation and daily average wind speed. The data is in NetCDF format with a horizontal spatial resolution of 0.083°, covering Yenisy, Lena, ob, Yukon and Mackenzie catchments. The data can be used to dirve hydrolodical model (VIC model) for hydrological process simulation of the Arctic River Basins. The further quality control were made for daily observation data from Global Historical Climatology Network Daily database(GHCN-D), Global Summary of the Day (GSPD),The U.S. Historical Climatology Network (USHCN),Adjusted and homogenized Canadian climate data (AHCCD) and USSR / Russia climate data set (USSR / Russia). The thin plate spline interpolating method, which similar to the method used in PNWNAmet datasets (Werner et al., 2019), was employed to interpolate daily station data to 5min spatial resolution daily gridded forcing data using WorldClim and ClimateNA monthly climate normal data as a predictor.
ZHAO Qiudong, WU Yuwei
A total of 52 sample sites were selected in the desert belts of Qinghai and Tibet for field sampling of aboveground biomass of vegetation during the vegetation growing season in 2019 and 2020. At the same time, the longitude, latitude and altitude of the experimental site were recorded using handheld GPS devices. The field setting method of the quadrate is as follows: select a section with uniform vegetation. When the vegetation is relatively abundant, the quadrate is set as a 10 m x10 m square plot, and when the vegetation is relatively sparse, the quadrate is set as a 30 m x30 m square plot or a 30 m x90 m rectangular plot. 3-5 small sample boxes (1m x 1m) were randomly thrown into the set sample plot to determine the specific location of the sample. Collect plant samples by sample harvesting method: register plant species, number of plants of each species and other information in sample area of 1 square meter. All kinds of plants in the quadrate were planted and mowed on the ground, and the collected herbaceous plant samples were placed in archives and marked with species, sample site name and number, collection time and other information. They were brought back to the laboratory and dried to a constant weight in a constant temperature drying oven at 65 ℃. The dry weight of the plant samples was measured. Finally, the aboveground biomass of the vegetation was calculated. In addition, two kinds of remote sensing net primary productivity (NPP) data of the 52 sample points were extracted by the longitude and latitude of the sampling points. (1) Enhanced Vegetation Index (EVI) from 2000 to 2018, and calculated the annual Integrated Enhanced Vegetation Index (IEVI). IEVI was highly correlated with net primary productivity (NPP). Can be used as a proxy indicator of net primary productivity (He et al. 2021, Science of The Total Environment). (2) Percentage of remote sensing net primary productivity (NPP) and its quality control (QC) in 2001-2020, NPP remote sensing data from MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/), the net photosynthetic value (the total primary productivity - keep breathing) is calculated. In the sample sites with low vegetation coverage, there may be null value (NA) of remote sensing net primary productivity.
YE Jiansheng
The data set consists of four sub tables, which are remote sensing monitoring of Lake area from 2000 to 2019, total lake water storage based on underwater 3D simulation model, Lake area volume equation based on underwater 3D simulation model, and key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province. The first sub table is the time series Lake area data from 2000 to 2019 from remote sensing image data monitoring. The third sub table stores the area storage capacity equation of the lake based on the underwater three-dimensional simulation model of the lake. The second sub table is the estimation result by combining the time series Lake area data and the area storage capacity equation, Finally, the key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province from 2000 to 2019 are obtained, including simulated water depth, maximum water depth, simulated reference water level and corresponding Lake area of each lake, which are stored in the fourth sub table.
FANG Chun, LU Shanlong, JU Jianting, TANG Hailong
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn