Current Browsing: Radiation


HiWATER: Dataset of flux observation matrix (No.2 eddy covariance system) of the multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (2012)

This dataset contains the flux measurements from site No.2 eddy covariance system (EC) in the flux observation matrix from 3 June to 21 September, 2012. The site (100.35406° E, 38.88695° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.09 m. The EC was installed at a height of 3.7 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of radiosonde sounding observations in Zhangye National climate observatory from Jun to Aug, 2012

Our project entrust the L band radiosonde sounding encrypt observations to Zhangye National Climate Observatory, and collect regular observation twice a day. The dataset contains three times one day at 8:00, 14:00, 20:00, which can support the remote sensing image atmospheric correction and atmospheric science research. Observation Site: Zhangye National Climate Observatory located in Shajing Town, west of ZhangYe. The coordinates of this site: 39°5′15.68" N, 100°16′39.11" E。 Observation Instrument: China Meteorological Administration Operational L Band radiosonde system. Observation Time: The observation date last from 1 May, 2012 to 31 September, 2012, among which: Three times observations at 7:00-8:00, 13:00-14:00 and 19:00-20:00 during 1 June, 2012 to 31 August, 2012; twice at 7:00-8:00 and 19:00-20:00 during 2012-5-1 to 5-31 and 2012-9-1 to 9-31. Accessory data: Pressure, temperature, relative humidity, wind speed and wind direction profiles data.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Shenshawo desert Station, 2013)

This dataset contains the flux measurements from the Shenshawo desert station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.493° E, 38.789° N) was located in the desert surface, near Zhangye city in Gansu Province. The elevation is 1594 m. The EC was installed at a height of 4.6 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The 10 Hz data were missing during 8 December to 22 December, 2012, and data in this period were replaced with 30 min flux output by data logger. Data during 25 May to 29 May, 2013 were missing due to calibration of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Shenshawo desert Station, 2015)

This data set includes the eddy correlation data of Shenshawo Desert Station in the middle reaches of Heihe Hydrometeorological Observation Network from January 1, 2015 to April 12, 2015. The site is located in Zhangye City, Gansu Province, and the underlying surface is desert. The latitude and longitude of the observation point is 100.49330E, 38.78917N, and the altitude is 1594.00m. The height of eddy correlator is 4.6 m, the sampling frequency is 10 Hz, the ultrasonic orientation is positive north, and the distance between the ultrasonic wind speed thermometer (CSAT3) and the CO2/H2O analyzer (Li7500) is 15 cm. The original observation data of the eddy correlation meter is 10 Hz, and the released data is 30-minute data processed by Eddypro software. The main steps of the processing include: outlier removal, time-lag correction, coordinate rotation (double rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. At the same time, the quality evaluation of each flux value is conducted, it mainly contains atmosphere state stability test(Δst) and integrated turbulence characteristic test(ITC). The 30-min flux value output by Eddypro software was also screened: (1) data from the instrument error was eliminated; (2) data 1 h before and after precipitation was removed; (3) data from the deletion rate greater than 10% within every 30 min of the 10 Hz raw data. (4) eliminating observation data of weak turbulence at night (u* less than 0.1 m/s). The average time period of observation data is 30 minutes, 48 data per day, and the missing data is labeled -6999. Abnormal data caused by instrument drift and other reasons are marked in red. Published observations include: date/time Date/Time, wind direction Wdir(°), horizontal wind speed Wnd(m/s), lateral wind speed standard deviation Std_Uy(m/s), ultrasonic virtual temperature Tv(°C), water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar (m/s), Obukhov length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average of 0:00-0:30; the data is stored in *.xls format. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Huazhaizi desert Station, 2013)

This dataset contains the flux measurements from the Huazhaizi desert station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 24 September, 2012, to 31 December, 2013. The site (100.319° E, 38.765° N) was located in the desert steppe surface, near Zhangye city in Gansu Province. The elevation is 1731 m. The EC was installed at a height of 2.85 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The 10 Hz data were missing during 8 December to 22 December, 2012, and data in this period were replaced with 30 min flux output by data logger. Due to the malfunction of data logger in July, the 10 Hz data were missing, and data during this period were replaced by the 30 min data logger output data. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Multi-scale observation eXperiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix (No.3 eddy covariance system) (2012)

This dataset contains the flux measurements from site No.3 eddy covariance system (EC) in the flux observation matrix from 3 June to 18 September, 2012. The site (100.37634° E, 38.89053° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1543.05 m. The EC was installed at 3.8 m high, and sampled at 10 Hz. The EC was installed at a height of 3.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.2 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-14

WATER: Dataset of TIR spectrum observations in the arid region hydrology experiment area and A'rou foci experiment area from Jun to Jul, 2008

The dataset of TIR spectral emissivity was obtained in the arid region hydrology experiment area and A'rou foci experiment area. Observations were by: (1) Spectral emissivity obtained from 102F at 2-25um in cooperation with the handheld infrared thermometer (BNU) for the surface radiative temperature and one au-plating board for downward atmospheric radiation. The radiative transfer equation and TES methods were applied to retrieve emissivity. The grassland and the concrete floor were measured on May, 27, 2008, the wheat field and the maize field at ICBC resort on May, 29, 2008, the concrete floor (multiangle measurements) at ICBC resort on Jun. 3, 2008, the bare soil and the maize leaf in Yingke oasis maize field on Jun. 22, 2008, the maize and wheat canopy in Yingke oasis maize field on Jun. 23, 2008, the rape field in Biandukou experimental area on Jun. 24, 2008, the alfalfa, the saline land, the grassland and the barley land on Jun. 26, 2008, the wheat field and the maize field in Yingke oasis maize field on Jun. 29, 2008, the desert bare land and vegetation (Reaumuria soongorica) in No. 2 Huazhaiai desert plot on Jun. 30, 2008, the rape field and the grassland in Biandukou experimental area on Jul. 6, 2008, and the grassland and the bare land (multiangle) in A'rou experimental area on Jul. 14, 2008. The cold blackbody calibration (*.CBX/*.CBB), the warm blackbody calibration (*.WBX/*.WBB), the ground objects measurements (*.SAX), au-plating board measurements, and the downward atmospheric radiation (*.DWX) were all needed during observation. Moreover, the spectral radiance and emissivity were also archived. The response function of various bands could be acquired by 102F. And then emissivity of 2-25um could be retrieved. Two results of emissivity were developed: one was direct from 102F and the other was retrieved by ISSTES (Iterative spectrally smooth temperature-emissivity separation). Spectral resolution for raw data and proprecessed data was 4cm-1. (2) Spectral emissivity obtained from BOMAN at 2 -13μm in cooperation with the blackbody barrel and the blackbody from Institute of Remote Sensing Applications and the blackbody (BNU). The desert was measured on Jun. 30 and Jul. 1, 2008, A'rou foci experimental area on Jul. 14, 2008, indoor observations on the deep and shallow layer soil, vegetation, small stones, two maize plants from Yingke No.2 (YKYZYMD02) field and one maize plant and bare land from No. 3 (YKYZYMD03)field on on Jul. 16, 2008, Linze experimental area on Jul. 17, 2008, and gobi on Jul. 18, 2008. The sample site, coordinates, time and photos were all archived. During each observation, BOMAN was preheated and the blackbody was set at the predicted target temperature, which would be changed after the infrared radiation of the blackbody was measured by BOMAN. And then the target infrared radiation, the downward atmospheric radiation (reflected by the au-plating board) and the infrared radiation of the blackbody would be measured one by one. Raw data were archived in Igm, and after processed by FTSW500, the result was Rad (radiation). Finally, Rad would be changed into txt files by Matlab programs.

2019-09-14

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-Dataset of flux observation matrix (eddy covariance system of Shenshawo desert Station)

This dataset contains the flux measurements from the Shenshawo sandy desert station eddy covariance system (EC) in the flux observation matrix from 1 June to 15 September, 2012. The site (100.49330° E, 38.78917° N) was located in a sandy desert surface, which is near Zhangye, Gansu Province. The elevation is 1594.00 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (large aperture scintillometer of Sidaoqiao Superstation, 2013)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation (two sites) in the hydrometeorological observation network of Heihe River Basin. There were two types of LASs at site 1: German BLS900 and Netherlands Kipp&zonen. The north tower was set up with the BLS900/Kipp&zonen receiver, and the south tower was equipped with the BLS900/Kipp&zonen transmitter. The observation period of BLS900_1 and Kipp&zonen were from 11 July to 13 November, 2013, and 11 July to 12 September, 2013, respectively. There was one type of LAS at site 2: German BLS900. The north tower was set up with the BLS900 receiver, and the south tower was equipped with the BLS900 transmitter. BLS900_2 has been in use since 16 September, 2013. The Sidaoqiao Superstation (site1, north: 101.147° E, 42.005° N, south: 101.131° E, 41.987° N; site 2, north: 101.137° E, 42.008° N, south: 101.121° E, 41.990° N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LASs was 25.5 m, and the path length of site 1 and site 2 were 2390 m and 2380 m, respectively. The data were sampled at 5 Hz and 1 Hz intervals for BLS900 and zzlas, respectively, and then averaged over 1 min. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900_1: Cn2>7.25E-14, Kipp&zonen: Cn2>7.84E-14, BLS900_2: Cn2>7.33E-14). (2) The data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; Kipp&zonen: Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS900 and Kipp&zonen, respectively. Several instructions were included with the released data. (1) The data of site 1 were primarily obtained from BLS900_1 measurements, and missing flux measurements from the BLS900_1 instrument were substituted with measurements from the Kipp&zonen instrument. The missing data were denoted by -6999. The data of site 2 were obtained from BLS900_2 measurements, missing data were denoted by -6999. Due to the problems of BLS900_1 transmitter, the data after 13 November, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Populus forest station, 2013)

This dataset contains the flux measurements from the Populus forest station eddy covariance system (EC) in the lower reaches of the Heihe hydrometeorological observation network from 12 July to 31 December, 2013. The site (101.124° E, 41.993° N) was located in the Populus surface, Ejin Banner in Inner Mongolia. The elevation is 876 m. The EC was installed at a height of 22 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.2 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the CF card storage problem, data during 17 September to 9 December were replaced with the 30 min output flux data in the data logger. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2019-09-14