Current Browsing: Terrestrial Surface


The ENVISAT ASAR image dataset of the Heihe river basin (2007-2009)

ASAR (Advanced Synthetic Aperture Radar) is a Synthetic Aperture Radar sensor mounted on ENVISAT satellite. It operates in c-band with a wavelength of 5.6 cm and features multi-polarization, variable observation Angle and wide-range imaging. Heihe river basin of ENVISAT ASAR remote sensing data sets mainly through central Europe "dragon plan" project, the data to the Image mode, cross polarization (Alternating Polarisation) model with wide is given priority to, the spatial resolution of 30 meters. ENVISAT ASAR data 404 scenes are currently available in heihe river basin, including 82 scenes in APP mode, 7 scenes in IMP mode and 315 scenes in WSM mode. The acquisition time is: APP can choose the polarization mode, the time range is from 2007-08-15 to 2007-12-23, 2008-01-02 to 2008-12-20, 2009-02-15 to 2009-09-06; IMP imaging mode, time range from 2009-06-19 to 2009-07-12; WSM wide format, time range from 2005-12-05 to 2005-12-31,2006-01-06 to 2006-12-31, 2007-01-01 to 2007-12-30, 2008-01-01 to 2008-12-28, 2009-03-13 to 2009-05-22. Product level is L1B, without geometric correction, is amplitude data.

2020-06-08

1:1,000,000 Geomrphological map of the Heihe River basin (2000)

The geomorphic data of Heihe River are from the geomorphic Atlas of the people's Republic of China (1:1 million). This data is based on remote sensing image and other multi-source data integration and update. The main data used and referenced include: 1) remote sensing image data: TM and 2000's around 1990's nationwide About ETM image; 2) historical geomorphic map: 15 published 1 million geomorphic maps, two sets of 1:4 million geomorphic maps in China, 500000 or 1 million geomorphic sketches in all provinces and cities in China; 3) basic geographic data: 1:250000 basic geographic data and 250000 DEM data in China; 4) geological data: 1:500000 geological map in China; 5) relevant thematic maps: land use map, vegetation map and land resource map And so on. The interpretation method adopts the human-computer interaction method based on ArcGIS, and is carried out according to the interpretation sequence of hierarchical classification: the first layer: plain and mountain; the second layer: basic geomorphic types (28); the third layer: 10 genetic types; the fourth layer: secondary genetic types; the fifth layer: morphological difference classification types; the sixth layer: secondary morphological difference classification types; the seventh layer: slope, slope The eighth layer is the type of geomorphic material determined by material composition or lithology; the ninth layer is the combination of 1-7 layers of map spots. There are 441 geomorphic types and codes. Data fields include: fenfu (view frame number), name (attribute), class (code), sname (administrative division).

2020-06-08

The HWSD soil texture dataset of the Qinghai Lake Basin (2009)

The dataset is the HWSD soil texture dataset of the Qinghai Lake Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.

2020-06-08

Geomorphological of China 1:4,000,000

The integration of geomorphological information in western China was completed by a team led by Dr. Xie Chuanjie, Institute of Geography, Resources and Environment, Chinese Academy of Sciences. These include the national geomorphological database of 1: 4 million and the western geomorphological database of 1: 1 million. The geomorphological data of 1: 4 million are tracked, collected and collated by the Geography Department of the National Planning Commission of the Chinese Academy of Sciences, "China Geomorphological Map (1: 4 million)" edited by Li Bingyuan and "Geomorphological Map of China and Its Adjacent Areas (1: 4 million)" edited by Chen Zhiming. Scan and register the data, vectorize all registered maps by ArcMap software, and establish their own classification and code systems. Geomorphological types are divided into basic geomorphological types and morphological structure types (point, line and surface representation) according to map spots (common staining) and symbols. Data are divided into structural geomorphology and morphological geomorphology. Projection information: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: datumg Angular Unit: Degree (0.017453292519943299) Prime Meridian: <custom> (0.000000000000000000) Datum: D_Krasovsky_1940 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000

2020-06-08

The monitoring data of soil and groundwater temperature in Hulugou Watershed from 2016 May to 2016 September

The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.

2020-06-07

Deuterium oxygen isotope values of precipitation, river water and groundwater (including spring water) in Hulugou small watershed (July September 2015)

一. data description The data included the precipitation, river water and groundwater in the small calabash valley from July to September 2015 2H, 18O, with a sampling frequency of 2 weeks/time. 二. Sampling location (1) the precipitation sampling point is located in the ecological hydrology station of the institute of cold and dry regions, Chinese academy of sciences, with the latitude and longitude of 99 ° 53 '06.66 "E, 38 ° 16' 18.35" N. (2) the sampling point of the river is located at the outlet flow weir of haugugou small watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N.The water sampling point number 2 position for heihe river upstream hoist ditch Ⅱ area exports, latitude and longitude 99 ° 52 '58.40 "E, 38 ° 14' 36.85" N. (3) underground water spring and well water sampling points.The sampling point of spring water is located at 20m to the east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E, 38°16' 11.44" N. The well water sampling point is located near the intersection of east and west branches, with the latitude and longitude of 99 ° 52 '45.38 "E, 38 ° 15' 21.27" N. 三. Test method The δ2H and δ18O values of the samples were measured by PICARRO L2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by the test accuracy value of v-smow relative to the international standard substance, and the measurement accuracy was 0.038‰ and 0.011‰, respectively.

2020-06-07

The anions and cations of river water and groundwater from the Hulugou catchment from July to Sep, 2015

1、 Data Description: the data includes the samples of anions and anions of river water and groundwater in hulugou small watershed from July to September 2015 for test and analysis. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. One is located at the outlet flow weir of hulugou small watershed in the upper reaches of Heihe River, with latitude and longitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points are 20 m to the east of the drainage basin outlet, with longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: the cation of sample is tested by inductively coupled plasma atomic emission spectrometer (ICP-AES), the test accuracy is 0.05mg/l, and the anion is tested by ion chromatograph (ics1100), the test accuracy is 0.002mg/l.

2020-06-07

The value of dissolved organic carbon of river water and groundwater water from the Hulugou outlet from Jul to Sep, 2015

1、 Data Description: data includes doc and DIC values of river water and groundwater in hulugou small watershed from July to September 2015. The sampling frequency is once every two weeks. 2、 Sampling location: (1) there are two river water sampling points. The first sampling point is located at the hydrological section at the outlet of hulugou Small Watershed at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 47.7 ″ E and 38 ° 16 ′ 11 ″ n. The second sampling point of the river is located at the outlet of hulugou area II at the upper reaches of Heihe River, with the longitude and latitude of 99 ° 52 ′ 58.40 ″ E and 38 ° 14 ′ 36.85 ″ n. (2) Underground water spring and well water sampling points. The spring sampling point is located at 20 m to the east of the drainage basin outlet, with the longitude and latitude of 99 ° 52 ′ 50.9 ″ E and 38 ° 16 ′ 11.44 ″ n. The well water sampling point is located near the intersection of the East and West Branch ditches, with the longitude and latitude of 99 ° 52 ′ 45.38 ″ E and 38 ° 15 ′ 21.27 ″ n. 3、 Test method: Doc and DIC values of samples were measured by oiaurora 1030w TOC instrument, detection range: 2ppb c-30000ppm C.

2020-06-07

Vegetation map (1:1,000,000) in the Heihe River basin (2001)

The data is the digitization of the Heihe River basin part of the 1:1 million Vegetation Atlas of China, 1:1000, 000 Vegetation Atlas of China is edited by academician Hou Xueyu, a famous vegetation ecologist (Hou Xueyu, 2001). It is jointly compiled by more than 250 experts from 53 units such as research institutes of Chinese Academy of Sciences, relevant ministries and commissions, relevant departments of various provinces and regions, colleges and universities. It is another summative achievement of vegetation ecologists in China over 40 years after the publication of monographs such as vegetation of China Basic map of natural resources and natural conditions of the family. It is based on the rich first-hand information accumulated by vegetation surveys carried out throughout the country over the past half century, and the materials obtained by modern technologies such as aerial remote sensing and satellite images, as well as the latest research achievements in geology, soil science and climatology. It reflects in detail the distribution of vegetation units of 11 vegetation type groups, 796 formations and sub formations of 54 vegetation types, horizontal and vertical zonal distribution laws, and also reflects the actual distribution of more than 2000 dominant species of plants, major crops and cash crops in China, as well as the close relationship between dominant species and soil and ground geology. The atlas is a kind of realistic vegetation map, reflecting the recent quality of vegetation in China.

2020-06-05

The resident site distribution data of the Heihe River Basin

This data mainly includes the distribution of city, county, township and village level residential areas in the Heihe River Basin, and the data base year is 2009. The data is based on the existing data of residential areas in Heihe River Basin, the latest Google electronic map and the atlas of Gansu Province. There are two main attributes of the data, i.e. residential area classification and total name. The residential area classification is classified according to level 1 - City, level 2 - County, level 3 - Township and level 4 - village.

2020-06-05