Current Browsing: Terrestrial Surface


HiWATER: BNUNET soil moisture and LST observation dataset in the middle reaches of the Heihe River Basin from Sep., 2013 to Mar., 2014

This data set includes 26 bnunet nodes in the 0.5 °× 0.5 ° observation matrix around Zhangye City in the middle reaches of Heihe River from September 2013 to March 2014. The configuration of 26 nodes is the same, including 3 layers of soil temperature probe with depth of 1cm, 5cm and 10cm and 1 layer of soil moisture probe with depth of 5cm. The observation frequency is 2 hours. This data set can provide spatiotemporal continuous observation data set for remote sensing authenticity test of surface heterogeneity and ecological hydrology research. The time is UTC + 8. Please refer to "bnunet data document. Docx" for details

2020-03-14

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Linze Inland River Basin Comprehensive Research Station on July 3, 2012

On July 3, 2012, airborne ground synchronous observation was carried out in plmr sample belt near Linze station. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: According to the typical ground surface type represented by three points near Linze station and taking part of neutron tube observation into account, the three routes from northwest to southeast are designed, with an interval of 200 m, a design altitude of about 300 m and a plmr ground resolution of 100 m. According to the observation characteristics of the route and plmr, three observation transects are designed on both sides of the route, each of which is about 6 km long. From west to East are L1, L2 and L3 respectively. Among them, L1 and L2 are centered on the middle route, 80 m apart; L2 and L3 are 200 m apart. Four hydroprobe data acquisition systems (HDAS, ref. 2) were used to measure at the same time. Measurement content: About 4500 points on the sample belt were obtained, each point was observed twice, that is to say, in each sampling point, once in the film (marked as a in the data record) and once out of the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Note: the observation date coincides with the irrigation of large area of farmland in this area, which makes it difficult for the observer to move forward, the field block is difficult to enter, and the observation point position deviates from the preset point position. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.

2020-03-14

HiWATER: Simultaneous continuous observation dataset of differential GPS with LiDAR and WIDAS airborne flying in the middle and upper reaches of the Heihe River Basin in 2012

During lidar and widas flight in summer 2012, the ground synchronously carried out the continuous observation of differential GPS of ground base station, and obtained the synchronous GPS static observation data, which is used to support the synchronous solution of aviation flight data. Measuring instrument: Two sets of triple R8 GNSS system. Zgp8001 sets Time and place of measurement: On July 19, 2012, EC matrix lidar flew and observed at mjwxb (northwest of Maojiawan) and sbmz (shibamin) two base stations at the same time On July 25, 2012, lidar of hulugou small watershed and tianmuchi small watershed in the upper reaches flew, observed in XT Xiatang, lidar of Zhangye City calibration field in the middle reaches, and observed in mjwxb (northwest of Maojiawan) On July 26, 2012, lidar flight of hulugou small watershed and tianmuchi small watershed in the upper reaches was observed in XT Xiatang, lidar flight of Zhangye City calibration field in the middle reaches was observed in HCZ (railway station) On August 1, 2012, the upper east and West branches of widas flew and observed in yng (yeniugou) On August 2, 2012, the midstream EC matrix test area widas flew and observed in HCZ (railway station) On August 3, 2012, the midstream EC matrix test area widas flew and observed in mjwxb (northwest Maojiawan) Data format: Original data format before differential preprocessing.

2020-03-14

HiWATER: Dataset of fractional vegetation cover and biomass observed in the middle reaches of the Heihe River Basin (2014)

This data includes the coverage data set of vegetation in one growth cycle in five stations of Daman super station, wetland, desert, desert and Gobi, and the biomass data set of maize and wetland reed in one growth cycle in Daman super station. The observation time starts from May 10, 2014 and ends on September 11, 2014. 1 coverage observation 1.1 observation time 1.1.1 super station: the observation period is from May 10 to September 11, 2014. Before July 20, the observation is once every five days. After July 20, the observation is once every 10 days. A total of 17 observations are made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 1.1.2 other four stations: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; Other four stations: May 10, 2014, May 20, 2014, May 30, 2014, June 10, 2014, June 20, 2014, June 30, July 10, 2014, July 20, August 5, 2014, August 17, 2014, September 11, 2014 1.2 observation method 1.2.1 measuring instruments and principles: The digital camera is placed on the instrument platform at the front end of the simple support pole to keep the shooting vertical and downward and remotely control the camera measurement data. The observation frame can be used to change the shooting height of the camera and realize targeted measurement for different types of vegetation. 1.2.2 design of sample Super station: take 3 plots in total, the sample size of each plot is 10 × 10 meters, take photos along two diagonal lines in turn each time, take 9-10 photos in total; Wetland station: take 2 sample plots, each plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 3 other stations: select 1 sample plot, each sample plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 1.2.3 shooting method For the super station corn and wetland station reed, the observation frame is directly used to ensure that the camera on the observation frame is far higher than the vegetation crown height. Samples are taken along the diagonal in the square quadrat, and then the arithmetic average is made. In the case of a small field angle (< 30 °), the field of view includes more than 2 ridges with a full cycle, and the side length of the photo is parallel to the ridge; in the other three sites, due to the relatively low vegetation, the camera is directly used to take pictures vertically downward (without using the bracket). 1.2.4 coverage calculation The coverage calculation is completed by Beijing Normal University, and an automatic classification method is adopted. For details, see article 1 of "recommended references". By transforming RGB color space to lab space which is easier to distinguish green vegetation, the histogram of green component A is clustered to separate green vegetation and non green background, and the vegetation coverage of a single photo is obtained. The advantage of this method lies in its simple algorithm, easy to implement and high degree of automation and precision. In the future, more rapid, automatic and accurate classification methods are needed to maximize the advantages of digital camera methods. 2 biomass observation 2.1 observation time 2.1.1 corn: the observation period is from May 10 to September 11, 2014, once every 5 days before July 20, and once every 10 days after July 20. A total of 17 observations have been made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 2.1.2 Reed: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2 observation method Corn: select three sample plots, and select three corn plants that represent the average level of each sample plot for each observation, respectively weigh the fresh weight (aboveground biomass + underground biomass) and the corresponding dry weight (85 ℃ constant temperature drying), and calculate the biomass of unit area corn according to the plant spacing and row spacing; Reed: set two 0.5m × 0.5m quadrats, cut them in the same place, and weigh the fresh weight (stem and leaf) and dry weight (constant temperature drying at 85 ℃) of reed respectively. 2.3 observation instruments Balance (accuracy 0.01g), oven. 3 data storage All the observation data were recorded in the excel table first, and then stored in the excel table. At the same time, the data of corn planting structure was sorted out, including the plant spacing, row spacing, planting time, irrigation time, except for the parent time, harvesting time and other relevant information.

2020-03-14

HiWATER: Dataset of soil freeze/thaw experiment observed in the middle reaches of the Heihe River Basin from Nov. 24 to Nov. 25, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer and synchronous measurement from November 24-25, 2013 in the desert of Minle County, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 24-25, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage, 18.7ghz h polarization damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.3m 4. Data format:. Xls

2020-03-14

Canopy interception dataset of Picea crassifolia in Tianlaochi watershed of Qilian Mountain

The data are from 2011 to 2012. A 30m×30m Picea crassifolia canopy interception sample plot was set up in the Picea crassifolia sample plot at an altitude of 2800m m. A siphon raingauge model DSJ2 (Tianjin Meteorological Instrument Factory) was set up on the open land of the river about 50m from the sample plot to observe the rainfall outside the forest and its characteristics. Penetrating rain in the forest adopts a combination of manual observation and automatic observation. Automatic observation is mainly realized through a penetrating rain collection system arranged in the interception sample plot, which consists of a water collecting tank and an automatic recorder. Two 400cm×20cm water collecting tanks are connected with DSJ2 siphon rain gauge, and the change characteristics of penetrating rain under the forest are continuously recorded by an automatic recorder. Due to the spatial variability of the canopy structure of Picea crassifolia forest in the sample plot, a standard rainfall tube for manual observation is also arranged in the sample plot to observe the penetrating rain in the forest. Ninety rainfall tubes with a diameter of 20cm are arranged in the sample plot at intervals of 3m. After each precipitation event ends and the penetrating rain in the forest stops, the amount of water in the rain barrel will be emptied and the penetrating rain in the barrel will be measured with the rain cup.

2020-03-14

Dataset of water level at the Sidalong Sub-Basin in Qilian Mountain (2011)

This data is the water level data of 2011-2012, which is observed by water level recorder. From July 14 to September 9, 2011, the observation was recordered every five minutes; from June 4 to July 10, 2012, the observation was recordered every ten minutes. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. The data shall be opened with HOBO software.

2020-03-14

HiWATER: Dataset of soil freeze/thaw experiment observed in the midstream of the Heihe River Basin from Nov. 22 to Nov. 24, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 22 to 24, 2013 in Desert Park desert, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 22-24, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 7.4M 4. Data format:. Xls

2020-03-13

HiWATER:Dataset of soil freeze/thaw experiment observed in the middle reaches of the Heihe River Basin from Nov. 21 to Nov. 22, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 21-22, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 21-22, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, which can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls

2020-03-13

HiWATER: Dataset of soil freeze/thaw experiment observed in the middle reaches of the Heihe River Basin from Nov. 19 to Nov. 20, 2013

This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by vehicle borne microwave radiometer from November 19 to 20, 2013 in Wuxing village farmland, Ganzhou District, Zhangye City, Gansu Province. The surface temperature and humidity include four layers of temperature sensor at the soil depth of 1cm, 5cm, 10cm, 20cm, and the observation of soil temperature and soil moisture data at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 19-20, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz V polarization and H polarization data (10.65ghz band damage) Soil temperature: use sensor installed on dt80 to measure 1cm, 5cm, 10cm, 20cm soil temperature Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 2.5m 4. Data format:. Xls

2020-03-13