Current Browsing: Terrestrial Surface


The observational data of photosynthetic physiological and moisture physiology of desert dominant species from Jun to Jul, 2014

In the late June and early July of 2014, the dominant species of desert plants in the lower reaches of Heihe River, Lycium barbarum and Sophora alopecuroides, were selected. Using the LI-6400 portable photosynthesis system (LI-COR, USA), the photosynthetic and water physiological characteristics of desert plants were measured and analyzed.

2020-01-10

Observation dataset of maize photosynthesis in the irrigating areas of the midstream of the Heihe River Basin (2012)

This data is based on the observation of corn in the middle reaches of heihe river irrigated area. The observation instrument is licor-6400 XTR and the site is selected near the HiWATER combined test superstation.The photosynthesis parameters of maize were observed through uncontrolled experiments and controlled experiments (controlling carbon dioxide and light intensity) from June 22, 2012 to August 24, 2012.

2019-12-27

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on June 28-29, 2012

The first dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Yingke oasis and Huazhaizi desert steppe on 28-29 June, 7, 10, 26 July, 2 August, 2012 (UTC+8). The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Linze Inland River Basin Comprehensive Research Station on 3 July, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted in the southwest part of the Zhangye Oasis, which included two sampling plots. One was located in Gobi desert with an area of 1 km × 1 km. Due to its homogeneous landscape, around 10 points were sampled to acquire the situation of soil water content. The other sampling plot was designed in farmlands with a dominant plant type of maize. Ground measurements took place along 16 transects, which were arranged parallelly with an interval of 160 m between each other in the east-west direction. In each 2.4 km long transect, soil moisture was sampled at every 80 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. For each sampling point in farmland, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). The field campaign started from 11:00 AM, but stopped at 4:00 PM on 28 June because of rain. The rest of measurements were completed from 10:30 AM to 5:30 PM on 29 June. Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within the farmland sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

2019-09-15

HiWATER: Dataset of hydrometeorological observation network (No.6 runoff observation system of Gaoya hydrological station, 2013)

The No. 6 hydrological section is located at Gaoya Hydrological Station (100.433° E, 39.135° N, 1420 m a.s.l.) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. This hydrological section is for intercomparison of flow measurement between ADCP and manual method. The dataset contains recorded by the No. 6 hydrological section from 10 August, 2012 to 31 December, 2013. The width of this section is 58 meters. The water level was measured using an HOBO pressure range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-15

HiWATER: Dataset of intensive runoff observations of No.7 in the midstream of the Heihe River Basin of the MUlti-Scale Observation EXperiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)

The No. 7 hydrological section is located at Pingchuan Heihe River Bridge (39 ° 20′2.03 ″ N, 100° 5′49.63″ E, 1375 m a.s.l.) in the middle reaches of the Heihe River Basin, Zhangye, Gansu Province. The dataset contains observations from the No.7 hydrological section from 13 June, 2012, to 24 November, 2012. The width of this section is 130 meters. The water level was measured using SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following sections: Water level (recorded every 30 minutes) and Discharge. The data processing and quality control steps were as follows: 1) The water level data which collected from the hydrological station were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. 2) Data out the normal range records were rejected. 3) Unphysical data were rejected. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), He et al. (2016) (for data processing) in the Citation section.

2019-09-15

HiWATER: Thermal-infrared hyperspectral radiometer (10th, July, 2012)

On 10 July 2012 (UTC+8), TASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km), Linze region and Heihe riverway. The relative flight altitude is 2500 meters. The wavelength of TASI is 8-11.5 μm with a spatial resolution of 3 meters. Through the ground sample points and atmospheric data, the data are recorded in surface radiance processed by geometric correction and atmospheric correction.

2019-09-15

The measured sapwood and heartwood dataset in the downstream of the Heihe River

The accurate estimation of sapwood area and heartwood area is the main means to convert the transpiration water consumption scale. In October 2011, this project investigated the sapwood and heartwood of 98 Populus euphratica in Ejin Oasis and measured the width of sapwood and heartwood. The relation curve of sapwood area with DBH and height was established. Please refer to LI Wei, SI Jianhua,FENG Qi, YU Teng fei. Response of Transpiration to Water Vapour Pressure Defferential of Populus euphratica. Journal of Desert Research, 2013, 33(5): 1377-1384. for details.

2019-09-15

HiWATER: PROBA CHRIS dataset

This dataset includes seven scenes; two scenes cover the Dayekou catchment on (yy-mm-dd) 2012-08-19 and 2012-08-28, one scene covers the airport desert experimental site on 2012-06-29, three scenes cover the Daman foci experimental area on 2012-06-21, 2012-07-10 and 2012-08-27, and one scene covers the natural oasis eco-hydrology experimental area in the lower reaches of the Heihe River Basin. The data were all acquired around 9:00 (BJT) of full swath mode with data product of Level 1A. PROBA CHRIS dataset was acquired through the European Space Agency (ESA)-Ministry of Science and Technology of China (MOST) Cooperative Dragon 2 (project ID: 5322) and Dragon 3 (project ID: 10649) Programme.

2019-09-15

HiWATER: Dataset of soil parameters in the midstream of the Heihe River Basin (2012)

This data was measured in middle stream of the Heihe River Basin in year 2012. Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter were measured for each layer of the soil profile which is very close to the AMS sites. This data can be used in land surface model and ecological model. Soil profile position: The coordinate of the profile is listed as follow. No.1 to No.17 is corresponding to the AMS number in the Matrix. No. x y 1 100.3582 38.89322 2 100.3541 38.88697 3 100.3763 38.89057 5 100.3506 38.87577 6 100.3597 38.8712 7 100.3652 38.87677 8 100.3765 38.87255 9 100.3855 38.87241 10 100.3957 38.87569 11 100.342 38.86994 12 100.3663 38.86516 13 100.3785 38.86077 14 100.3531 38.85869 16 100.3641 38.8493 17 100.3697 38.84512 15 (superstation) 100.3721 38.85547 Gebi 100.3058 38.91801 Huazhaizi 100.3189 38.7652 Shenshawo 100.4926 38.78794 Instruments: Soil texture: Microtrac laser particle analyzer Porosity: Ring sampler law Bulk density: Ring sampler law Saturated Water Conductivity: hydrostatic head method Soil organic matter: Total organic carbon analyzer (TOC-VCPH) Measuring time: 2012-5-20 to 2012-7-10 (UTC+8). Measuring content: Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter.

2019-09-15

HiWATER: BNUNET soil moisture and LST observation dataset in the midstream of the Heihe River Basin (2012)

This dataset includes soil moisture and soil temperature observations of 75 BNUNET nodes during the period from May to September 2012 (UTC+8), which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The BNUNET located in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area. Each BNUNET node observes the soil temperature at 4 cm, 10 cm and 20 cm depth, and soil moisture at 4 cm depth with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "Data introduction.docx".

2019-09-15