Basin scale hydrological and ecological processes and their impacts on global climate change data in the Loess Region

The hydrological ecological process at the loess basin scale and its response to global climate change is a project of the Major Research plan of the National Natural Science Foundation of China - Environmental and Ecological Science in Western China. The project is led by liu wenzhao, a researcher from the institute of water and soil conservation, ministry of water resources, Chinese academy of sciences. The project runs from January 2003 to December 2005. The project submitted data: The CLIGEN parameter and output dataset of the Loess Plateau: It was generated during the evaluation and improvement of the practicality of the weather generator CLIGEN in the Loess Plateau. The dataset includes parameter data files for driving CLIGEN and 100-year daily weather data files generated by running CLIGEN from 71 meteorological stations on the Loess Plateau. The 71 sites are distributed in 7 provinces (Shanxi, Shanxi, Gansu, Inner Mongolia, Ningxia, Henan, and Qinghai). Each file is individually saved in ASCII format and can be opened for viewing with text programs. This data set is generated based on long-term serial daily meteorological data measured by 71 meteorological stations on the Loess Plateau. Daily meteorological parameters include: precipitation, maximum, minimum, and average temperature, solar radiation, relative humidity, wind speed and direction. The data comes from the China Meteorological Science Data Sharing Service Network and the Loess Plateau Soil and Water Conservation Database. Among them, solar radiation data is available at only 12 sites on the Loess Plateau. The solar radiation parameters at other sites are generated by kriging space interpolation. The dew point temperature is calculated using the average temperature and relative humidity.

The combined 1000 yr temperature reconstruction records derived from a stalagmite and tree rings (1000 A.D.-2000 A.D.)

The application of general circulation models (GCMs) can improve our understanding of climate forcing. In addition, longer climate records and a wider range of climate states can help assess the ability of the models to simulate climate differences from the present. First, we try to find a substitute index that combines the effects of temperature in different seasons and then combine it with the Beijing stalagmite layer sequence and the Qilian tree-ring sequence to carry out a large-scale temperature reconstruction of China over the past millennium. We then compare the results with the simulated temperature record based on a GCM and ECH-G for the past millennium. Based on the 31-year average, the correlation coefficient between the simulated and reconstructed temperature records was 0.61 (with P < 0.01). The asymmetric V-type low-frequency variation revealed by the combination of the substitute index and the simulation series is the main long-term model of China's millennium-scale temperature. Therefore, solar irradiance and greenhouse gases can account for most of the low-frequency variation. To preserve low-frequency information, conservative detrended methods were used to eliminate age-related growth trends in the experiment. Each tree-ring series has a negative exponential curve installed while retaining all changes. The four fields of the combined 1000-yr (1000 AD-2000 AD) reconstructed temperature records derived from stalagmite and tree-ring archives (excel table) are as follows: 1) Year 2) Annual average temperature reconstruction 3) Reconstructed temperature deviation 4) Simulated temperature deviation