Atlas of 1:100,000 deserts in the upper reaches of the Yellow River (2000)

一. An overview This data set is a 1:100,000 distribution map of China's deserts as the data source, and it is tailored according to the river basin boundary. It mainly reflects the geographical distribution, area size, mobility and fixation degree of deserts, sandy land and gobi in the upper reaches of the Yellow River.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out. 二. Data processing instructions This data set takes the 1:100,000 distribution map of China's deserts as the data source and is tailored according to the basin boundary.The information source of this data set is Landsat TM image in 2000. Using remote sensing and geographic information system technology, according to the requirements of 1:100,000 scale thematic mapping, the thematic mapping of China's deserts, sandlands and gobi was carried out.According to the system design requirements and related standards, the input data is standardized and uniformly converted into various data input standard formats. 三. data content description This data set is divided into desert and non-desert category, the non-desert code is 999. The desert is divided into three categories, namely desert (land), gobi and saline-alkali land, and the classification code is 23410, 2342000 and 2343000 respectively.Among them, deserts (land) are divided into four categories, namely mobile desert (land), semi-mobile desert (land), semi-fixed desert (land) and fixed desert (land). The classification codes are 2341010, 2341020, 2341030 and 2341040. 四. Data usage instructions It can make the resources, environment and other related workers understand the desert type, area and distribution in the upper reaches of the Yellow River, and make the classification and evaluation of the wind and sand hazards in ningmeng river section.

Long-term serial GIMMS vegetation index dataset in China (1981-2006)

GIMMS (glaobal inventory modelling and mapping studies) NDVI data is the latest global vegetation index change data released by NASA C-J-Tucker and others in November 2003. The dataset includes the global vegetation index changes from 1981 to 2006, the format is ENVI standard format, the projection is ALBERS, and its time resolution is 15 days and its spatial resolution is 8km. GIMMS NDVI data recorded the changes of vegetation in 22a area in the format of satellite data. 1. File format: The GIMMS-NDVI dataset contains all rar compressed files with a 15-day interval from July 1981 to 2006. After decompression, it includes an XML file, an .HDR header file, an .IMG file, and a .JPG image file. 2. File naming: The naming rules for compressed files in the NOAA / AVHRR-NDVI data set are: YYMMM15a (b) .n **-VIg_data_envi.rar, where YY-year, MMM-abbreviated English month letters, 15a-synthesized in the first half of the month, 15b-synthesized in the second half of the month, **-Satellite. After decompression, there are 4 files with the same file name, and the attributes are: XML document, header file (suffix: .HDF), remote sensing image file (suffix: .IMG), and JPEG image file. In this data set, the user uses the remote sensing image file with the suffix .IMG to analyze the vegetation index. Remote sensing image files with suffix of .IMG and .HDF used by users to analyze vegetation indices can be opened in ENVI and ERDAS software. 3. The data header file information is as follows: Coordinate System is:     PROJECTION ["Albers_Conic_Equal_Area"],     PARAMETER ["standard_parallel_1", 25],     PARAMETER ["standard_parallel_2", 47],     PARAMETER ["latitude_of_center", 0],     PARAMETER ["longitude_of_center", 105],     PARAMETER ["false_easting", 0],     PARAMETER ["false_northing", 0],     UNIT ["Meter", 1]] Pixel Size = (8000.000000000000000, -8000.000000000000000) Corner Coordinates: Upper Left (-3922260.739, 6100362.950) (51d20'23.06 "E, 46d21'21.43" N) Lower Left (-3922260.739, 1540362.950) (71d16'1.22 "E, 8d41'42.21" N) Upper Right (3277739.261, 6100362.950) (151d 8'57.22 "E, 49d 9'35.37" N) Lower Right (3277739.261, 1540362.950) (133d30'58.46 "E, 10d37'13.35" N) Center (-322260.739, 3820362.950) (101d22'21.08 "E, 35d42'18.02" N) Band 1 Block = 900x1 Type = Int16, ColorInterp = Undefined     Computed Min / Max = -16066.000,11231.000 4. Conversion relationship between DN value and NDVI  NDVI = DN / 1000, divided by 10000 after 2003   The NDVI value should be between [-1,1]. Data outside this interval represent other features, such as water bodies.

The mechanism of vegetation degradation in Yuanjiang dry hot valley of Yunnan Province

The experimental project of vegetation degradation mechanism and reconstruction in Yuanjiang dry-hot valley in Yunnan belongs to the major research program of "Environmental and Ecological Science in Western China" of the National Natural Science Foundation. The principal is researcher Cao Kunfang of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. The project runs from January 2004 to December 2007. Data collected for this project include: 1. Excel table of multi-year average temperature and rainfall in Yuanjiang dry-hot valley (1961-2004), with attribute fields including monthly average temperature and monthly average rainfall. 2. excel table of annual average temperature (1750-2006) in the middle of Hengduan Mountain in China based on tree ring, with attribute fields including year and reconstructed average temperature. 3. excel table of summer temperatures (1750-2006) in the central Hengduan Mountains in southern China based on tree rings. The attribute fields include the year and the reconstructed average temperature in summer (April-September). 4. excel table of drought index (1655-2005) in central Hengduan Mountains of China based on tree rotation, with attribute fields including year and reconstruction of drought index in spring (March-May). 5. pdf file of growth dynamic graph of leaves and branches. it records the growth dynamic trend line and leaf dynamic trend graph of plants with s-type, f-type, intermediate-type and S+SD-type branches from March 22, 2004 to April 8, 2005. 6.32 Phenological Summary Tables of Woody Plants (word Document: Specific Name, Number of Observed Plants/Branches, Type of Branch Extension, Leaf Phenology, Length of Current Year Branches (cm), Total Leaves on Branches, Leaf Area (cm2), Non-leaf Period (Months), Flowering Period, Fruit Ripening Period and Fruit Type) 7. Seasonal Changes of Relative Water Content of Plant Leaves in Yuanjiang Dry-hot Valley (March 2003-February 2004) Excel Table 8. Seasonal Changes of Photosynthesis of 6 Representative Plants in Yuanjiang Dry-hot Valley (Maximum Photosynthetic Rate, Stomatal Conductance, Water Use Efficiency, Maximum Subefficiency of photosystem II) excle Table (2003-2005) 9. excle Table of Long-term Water Use Efficiency (Isotope) Data of Representative Plants in Yuanjiang Dry-hot Valley (Water Use Efficiency in Dry and Wet Seasons of Shrimp Flower, Red-skin Water Brocade Tree, Three-leaf Lacquer, Phyllanthus emblica, Pearl Tree, Dried Sky Fruit, Cyclobalanopsis glauca, West China Small Stone Accumulation, Geranium, Tiger thorn, Willow and Pigexcrement Bean) 10. word Document of List of Plants in Mandan Qianshan, Yuanjiang

Dataset of groundwater level in the lower reaches of Tarim River (2000-2007)

In the lower reaches of Tarim River, groundwater is the only water source to maintain the survival of natural vegetation. The change of groundwater level directly affects the growth and decline of plants and controls the evolution and composition of plant communities. Strengthening the research on chemical characteristics of groundwater is an important content of water resources quality evaluation, which is of great significance to the utilization mode, sustainable development, management and protection and construction of ecological environment of watershed water resources. Groundwater level data: In order to understand the change of groundwater level in the process of water conveyance in the lower reaches of the Tarim River, nine groundwater monitoring sections (Figure 1) have been established along the water conveyance channel of the lower reaches of the Tarim River-Qiwenkuoer River. Each section has a spacing of about 20 km. Below Daxi Haizi Reservoir, there are 9 sections such as Akdun (A), Yahefu Mahan (B), Yingsu (C), Abodah Le (D), Khaldayi (E), Tuguemaile (F) and Arakan (G), Yigan Buma (H) and Kaogan (1). Among them, the spacing of the last three sections is 45 km. In the horizontal direction, one underground water level monitoring well (well depth 8-17 m) is arranged at intervals of 100 m or 200 m in each section, and a total of 40 underground water monitoring wells are arranged to monitor the underground water level, water and salt dynamic changes and the influence range on the underground water level in each section during the water delivery process to the lower reaches of Tarim River. The monitoring frequency is once a month, and the monitoring frequency is increased during the water delivery process. Groundwater level data are monitored by conductivity method. Observation sections include: 1. Akerdun Section in Lower Reaches of Tarim River 2. Yahefu Mahan Section in Lower Reaches of Tarim River 3. Yingsu Section in Lower Reaches of Tarim River 4. Abodah-Le Section in Lower Reaches of Tarim River 5. Karadayi Section in Lower Reaches of Tarim River 6. Tuguemaile Section in Lower Reaches of Tarim River 7. Arakan Section in Lower Reaches of Tarim River 8. The lower reaches of Tarim River are not as good as the Ma section 9. Kaogan Section in Lower Reaches of Tarim River

Plant Quadrats Dataset in Downstream of Tarim River(2000-2007)

Investigation of plant sample plots can reflect the structure and distribution of plant communities, the declining succession of plant communities and their interrelation with environmental changes, reveal the ecological damage process in the lower reaches of the Tarim River, and provide scientific basis for the environmental remediation of the Tarim River Basin in the large-scale development of the western part of the country. According to the difference of species composition of plant communities in different sections of 9 monitoring sections in the lower reaches of Tarim River, plant sample plots are set up along the direction perpendicular to the river course in each monitoring section. Due to the different vegetation growth in each section, the size and number of sample plots are not equal. Among them, the sample plot of 5m×5m is arranged on the section of the herbaceous community. 30m×30m sample plots are arranged on the section where vegetation grows sparsely or is basically free of herbaceous plants, and 4 15m× 15 m arbor and shrub sample plots are arranged at intervals of 15 m; 50m×50m sample plots are arranged on the section where arbor, shrub and grass vegetation all occupy a certain proportion. In each plot of 50×50m, four plots of 25m×25m are set at 25m intervals to record the individual number, coverage, DBH, basal diameter, height and crown width of each tree (or shrub). At the same time, 4 small sample plots of 5m×5m are set up in each sample plot to record the individual number, coverage, height and other indicators of each herbaceous plant, and GPS is used to locate and record the altitude and longitude and latitude of each sample plot. Data content includes: 1. word Document for Statistics of Plant Sample Land Survey Data from 2000, 2002 to 2007 2. 2000 Inventory of Plant Sample Sites in Lower Reaches of Tarim River (Akdun, Yahopumahan, Yingsu, Abodah, Keldayi Section Vegetation Coverage, Canopy Density, Root Weight, etc.) excel Table 3. excel Table of Plant Sample Plot Survey in Lower Reaches of Tarim River in August 2002 (Data on Individual Number, Crown Width, Plant Height, Density and Coverage of Plants in Akdun, Yingsu, Khaldayi, Arakan and Shidaoban Sections) 4. 2003 Inventory of Plant Sample Sites in Lower Reaches of Tarim River (Data on Individual Number, Crown Width, Plant Height, Density and Base Diameter of Plants in Lower Reaches of Tahe River and Herbaceous Biomass in Akerdun Section) excel Table 5. In September 2004, the lower reaches of the Tarim River plant sample plot questionnaire (data of individual number, crown width, plant height, basal diameter (or DBH), coverage and biomass) excel table of the lower reaches of the Tarim River in Yahefu Mahan, Yingsu, Abodah Le, Khaldayi, Tugamale, Arakan, Yiganbuma and Kaogan sections 6. In July 2005, the lower reaches of Tarim River plant sample plot questionnaire (9 monitoring sections in the lower reaches of Tahe River and data of individual number, crown width, plant height, basal diameter (or DBH) and coverage of plants in taitema lake, and herbaceous biomass data in Akerdun section) excel table 7. In July 2006, the lower reaches of Tarim River plant sample plot questionnaire (the number of individual plants, crown width, plant height, basal diameter (or DBH) and herbaceous biomass data of Akerdun section in 9 monitoring sections in the lower reaches of Tahe River) excel table 8. July 2007, the lower reaches of Tarim river plant sample plot questionnaire (the number of individual plants, crown width, plant height, basal diameter (or DBH) and herbaceous biomass data of akdun section in 9 monitoring sections in the lower reaches of Tahe river) excel table